【總結(jié)】......抽象函數(shù)的周期性與對稱性知識點梳理一、抽象函數(shù)的對稱性定理1.若函數(shù)定義域為,且滿足條件:,則函數(shù)的圖象關于直線對稱。推論1.若函數(shù)定義域為,且滿足條件:,則函數(shù)的圖像關于直線對稱。推論
2025-05-16 05:00
【總結(jié)】......函數(shù)對稱性、周期性和奇偶性規(guī)律一、同一函數(shù)的周期性、對稱性問題(即函數(shù)自身)1、周期性:對于函數(shù),如果存在一個不為零的常數(shù)T,使得當x取定義域內(nèi)的每一個值時,都有都成立,那么就把函數(shù)叫做周期函數(shù),不為零的常數(shù)T叫做這
2025-06-16 03:50
【總結(jié)】·高中總復習(第1輪)·理科數(shù)學·全國版1第講5函數(shù)的奇偶性、周期性(第一課時)第二章函數(shù)·高中總復習(第1輪)·理科數(shù)學·全國版2考點搜索●奇函數(shù)、偶函數(shù)的概念
2025-08-20 08:57
【總結(jié)】X學習目標:、余弦函數(shù)的奇偶性、單調(diào)性的意義;、單調(diào)性;重點:正、余弦函數(shù)的性質(zhì)難點:正、余弦函數(shù)的性質(zhì).復習:正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3
2024-11-09 06:03
【總結(jié)】(一)函數(shù)的單調(diào)性知識梳理1.函數(shù)單調(diào)性定義:對于給定區(qū)間D上的函數(shù)f(x),若對于任意x,x∈D,當xf(x),則稱f(x)是區(qū)間D上的減函數(shù),D叫f(x)單調(diào)遞減區(qū)間.2.函數(shù)單調(diào)性的判斷方法:(1)從直觀上看,函數(shù)圖象
2025-06-23 20:11
【總結(jié)】函數(shù)奇偶性、對稱性與周期性奇偶性、對稱性和周期性是函數(shù)的重要性質(zhì),下面總結(jié)關于它們的一些重要結(jié)論及運用它們解決抽象型函數(shù)的有關習題。一、幾個重要的結(jié)論(一)函數(shù)圖象本身的對稱性(自身對稱)2、的圖象關于直線對稱。3、的圖象關于直線對稱。4、的圖象關于直線對稱。5、的圖象關于點對稱。6、
2025-06-18 20:22
【總結(jié)】函數(shù)單調(diào)性與奇偶性經(jīng)典例題透析(一)講課人:張海青授課時間:2014年9月23日授課地點:教學樓二樓多媒體(二)授課對象:高三文科優(yōu)生授課過程:類型一、函數(shù)的單調(diào)性的證明 1.證明函數(shù)上的單調(diào)性. 證明:在(0,+∞)上任取x1、x2(x1≠x2),令△x=x2-x10 則 ∵x10,x20,∴
2025-01-15 01:19
【總結(jié)】(一)課型:新授課教學目標:(1)知識與能力:理解增函數(shù)、減函數(shù)、單調(diào)區(qū)間、單調(diào)性等概念,掌握增(減)函數(shù)的證明和判別,學會運用函數(shù)圖象理解和研究函數(shù)的性質(zhì)。(2)過程與方法:引導學生通過觀察,歸納,抽象,概括自主構建單調(diào)性的概念,使學生領會數(shù)形結(jié)合的思想方法。(3)情感,態(tài)度,價值觀:培養(yǎng)學生主動探索,敢于創(chuàng)新的意識和精神,使學生理性思考生活中的增長和遞減的現(xiàn)象。
2025-07-25 05:18
【總結(jié)】數(shù)學高中數(shù)學必修1第二章函數(shù)單調(diào)性和奇偶性專項練習一、函數(shù)單調(diào)性相關練習題1、(1)函數(shù),{0,1,2,4}的最大值為_____.(2)函數(shù)在區(qū)間[1,5]上的最大值為_____,最小值為_____.2、利用單調(diào)性的定義證明函數(shù)在(-∞,0)上是增函數(shù).3、判斷函數(shù)在(-1,+∞)上的單調(diào)性,并給予證明.4、畫出函數(shù)的圖像,并指出函數(shù)的單調(diào)區(qū)間.5、已
2025-06-22 01:09
【總結(jié)】第十二課時函數(shù)的單調(diào)性和奇偶性【學習導航】學習要求:1、熟練掌握函數(shù)單調(diào)性,并理解復合函數(shù)的單調(diào)性問題。2、熟練掌握函數(shù)奇偶性及其應用。3、學會對函數(shù)單調(diào)性,奇偶性的綜合應用?!揪浞独恳弧⒗煤瘮?shù)單調(diào)性求函數(shù)最值例1、已知函數(shù)y=f(x)對任意x,y∈R均為f(x)+f(y)=f(x+y),且當x0時,f(x)0,f(1)=-.(1
2025-06-07 23:22
【總結(jié)】高中數(shù)學必修1對數(shù)函數(shù)(3)單調(diào)性與奇偶性新課、復合函數(shù)單調(diào)性問題1)(xf)(xg)]([)]([xfgxgf或求下列函數(shù)的單調(diào)區(qū)間)1(2log)1(??xy)1(21log)2(??xy)23(22log)3(???xxy)32(212lo
2025-05-15 02:15
【總結(jié)】函數(shù)單調(diào)性、奇偶性練習一、選擇題1.若函數(shù)f(x)=x(x∈R),則函數(shù)y=-f(x)在其定義域內(nèi)是( )A.單調(diào)遞增的偶函數(shù) B.單調(diào)遞增的奇函數(shù)C.單調(diào)遞減的偶函數(shù) D.單調(diào)遞減的奇函數(shù)2.下列函數(shù)中是奇函數(shù)且在(0,1)上遞增的函數(shù)是( )A.f(x)=x+ B.f(x)=x2-C.f(x)= D.f(x)=x33.已知y=f(x)是定義在
2025-06-18 20:37
【總結(jié)】函數(shù)的單調(diào)性與奇偶性1.若為偶函數(shù),則下列點的坐標在函數(shù)圖像上的是A.B.C.D.2.下列函數(shù)中,在區(qū)間(0,1)上是增函數(shù)的是A.B.C.3.下列判斷中正確的是
2025-03-24 12:17
【總結(jié)】2022年2月5日星期六1)理解函數(shù)的奇偶性含義,能利用定義判斷一些簡單函數(shù)的奇偶性;2)能利用函數(shù)周期性定義作出判斷及求一些常見簡單函數(shù)的最小正周期;__________________0)()(),0(,)()08.(1取值范圍為的則滿足時,有當上奇函數(shù)是定義在實數(shù)集已知函數(shù)上海改編x
2025-01-08 13:40
【總結(jié)】3高一數(shù)學函數(shù)練習題一、求函數(shù)的定義域1、求下列函數(shù)的定義域:⑴⑵⑶2、設函數(shù)的定義域為,則函數(shù)的定義域為___;函數(shù)的定義域為________;3、若函數(shù)的定義域為,則函數(shù)的定義域是;函數(shù)的定義域為。4、知函數(shù)的定義域為,且函數(shù)的定義域存在,求實數(shù)的取值范圍。
2025-03-25 02:03