【總結(jié)】全等三角形的性質(zhì):全等三角形的____、_____分別相等.全等三角形的識別:(SAS)(ASA)(AAS)(SSS)、直角邊(HL)謹(jǐn)防SSA!這是假冒偽劣產(chǎn)品!EDABC如圖中△ACE和△ACB例1:如圖,在△ABC中,∠BAC=∠ABC=45°
2024-11-06 23:24
【總結(jié)】生活中的平面圖形、作業(yè)說教材常見的桌面、黑板面、平靜的水面等,都給我們以平面的形象。幾何里所說的平面就是從這樣的一些物體抽象出來的。但是,幾何里的平面是無限延展的。這一節(jié)——生活中的平面圖形,是在講了生活中的立體圖形、(幾何體的)展開與折疊、截一個(gè)幾何體(截面是平面圖
2024-11-10 21:56
【總結(jié)】§學(xué)習(xí)目標(biāo):1、通過具體實(shí)例認(rèn)識圖形的旋轉(zhuǎn)變換;2、探索發(fā)現(xiàn)原圖形經(jīng)過旋轉(zhuǎn)后的對應(yīng)點(diǎn)、對應(yīng)線段之間的位置關(guān)系與數(shù)量關(guān)系.體驗(yàn)感受圖形旋轉(zhuǎn)的主要因素是旋轉(zhuǎn)中心和旋轉(zhuǎn)的角度,1、觀察日常生活中物體的旋轉(zhuǎn)現(xiàn)象,思考這些圖形有什么共同的特征?2、單擺上小球的轉(zhuǎn)動(dòng)特征:繞著某個(gè)點(diǎn)旋轉(zhuǎn)一、探索旋轉(zhuǎn)的概念旋
2024-11-27 23:13
【總結(jié)】平移和旋轉(zhuǎn)練習(xí)課北師大版三年級數(shù)學(xué)下冊學(xué)習(xí)目標(biāo)1.結(jié)合同學(xué)們的生活經(jīng)驗(yàn)和實(shí)例,感知平移與旋轉(zhuǎn)現(xiàn)象,并會直觀地區(qū)別這兩種常見的現(xiàn)象。2.使同學(xué)們能在方格紙上畫出一個(gè)簡單圖形沿水平方向、豎直方向平移后的圖形。左8右7下3畫出房子向左平移3格后的圖形。
2024-11-11 03:51
【總結(jié)】2022年春華師版數(shù)學(xué)七年級下冊課件第10章軸對稱、平移與旋轉(zhuǎn)3.旋轉(zhuǎn)第10章軸對稱、平移與旋轉(zhuǎn)3.旋轉(zhuǎn)知識管理學(xué)習(xí)指南歸類探究當(dāng)堂測評分層作業(yè)3.旋轉(zhuǎn)對稱圖形學(xué)習(xí)指南教學(xué)目標(biāo)1
2025-06-18 12:49
【總結(jié)】勾股定理練習(xí)練習(xí)(1)1、在RtABC中,已知AB=c,AC=b,BC=a,∠B=90°,①已知a=5,b=13,求c②已知a=9,c=12,求b③已知a=7,b=25,求c④已知a=11,c=60,求b練習(xí)(2)2、一個(gè)直角三角形
2024-11-06 13:13
【總結(jié)】選取一張撲克牌,繞某一點(diǎn)旋轉(zhuǎn)180度.你發(fā)現(xiàn)其中的奧秘了嗎?在平面內(nèi),一個(gè)圖形繞某個(gè)點(diǎn)旋轉(zhuǎn),如果旋轉(zhuǎn)前后的圖形互相重合,那么這個(gè)圖形叫做中心對稱圖形,這個(gè)點(diǎn)叫做它的對稱中心。下面圖形哪些是中心對稱圖形?線段1線段2OABABAB軸對稱圖形與中心對稱圖形:
2024-11-07 02:19
2025-06-12 03:26
【總結(jié)】旋轉(zhuǎn)木馬旋轉(zhuǎn)飛機(jī)華東師大版?七年級《數(shù)學(xué)下》§第一課時(shí)?2、旋轉(zhuǎn)中心是什么?3、旋轉(zhuǎn)的過程中,旋轉(zhuǎn)中心發(fā)生變化了嗎?4、旋轉(zhuǎn)方向是什么?5、你認(rèn)為決定圖形旋轉(zhuǎn)的主要因素是什么?,對應(yīng)線段?對應(yīng)角?數(shù)量關(guān)系是?7、旋轉(zhuǎn)角度是什么?如何通過量角器測量測量旋轉(zhuǎn)角度
2025-06-12 14:07
【總結(jié)】相似圖形的特征欣賞中體驗(yàn)正三角形正方形觀察中發(fā)現(xiàn)四邊形觀察中發(fā)現(xiàn)BCDB`C`D`對于四條線段a、b、c、d,如果其中兩條線段的長度的比與另兩條線段的長度的比相等,即=,那么這四條線段叫做成比例線段,簡稱比例線段(proportionalsegmen
2024-11-10 21:33
【總結(jié)】初中一年級數(shù)學(xué)(上)§立體圖形的展開圖陳偉文圓柱體圓錐體展開長方形展開扇形(1)(2)(3)一、做做看:下列三圖中哪一個(gè)可以折疊成多面體?正方體長方體四棱錐三棱柱練習(xí):下列圖形中是某些多面體的展開圖?(1)(3)(2)長方體五
2024-11-10 02:13
【總結(jié)】ABCDEF(1)將△ABC向右平移4個(gè)方格,得△DEF△ABC與△DEF能重合嗎?___________ABClDEF(2)作△ABC關(guān)于直線l的對稱圖形,得△DEF△ABC與△DEF能重合嗎?___________AOBCA’B’
2024-11-30 07:50
【總結(jié)】勾股定理的應(yīng)用------初三復(fù)習(xí)課第24屆國際數(shù)學(xué)大會會徽ICM2020我國已故著名數(shù)學(xué)家華羅庚教授建議..讓宇宙飛船帶著兩三個(gè)數(shù)學(xué)圖形飛到宇宙空間,其中一個(gè)是
2024-11-06 19:33
【總結(jié)】(青島版)五年級數(shù)學(xué)教案軸對稱圖形練習(xí)課教學(xué)環(huán)節(jié)教師活動(dòng)學(xué)生活動(dòng)設(shè)計(jì)意圖個(gè)性化設(shè)計(jì)課題軸對稱圖形的練習(xí)課教案序號2授課時(shí)間年月日課型練習(xí)教學(xué)目標(biāo)1、通過練習(xí),使學(xué)生進(jìn)一步加深理解和認(rèn)識軸對稱圖形及對稱軸。
2024-12-04 20:43
【總結(jié)】1.簡單的軸對稱第二課時(shí)角平分線的性質(zhì)一、復(fù)習(xí)引入1.點(diǎn)到直線的距離的定義是什么?2.角的定義。角平分線定義角是不是軸對稱圖形?ABO還記得嗎?就是:把一個(gè)圖形沿某條直線對折,對折的兩部分是完全重合的,這樣的圖形稱為軸對稱圖形。軸對稱圖形?二、新課
2024-11-19 10:59