【總結(jié)】第14章全等三角形三角形全等的判定第1課時(shí)兩邊及其夾角分別相等的兩個(gè)三角形知識(shí)點(diǎn)1判定三角形全等的方法——“SAS”(A)A.①②B.②③C.③④D.①④,若根據(jù)“SAS”來說明△ABC≌△DBC,則需補(bǔ)充的條件是(B)=DB,∠1=∠2=DB,∠3=∠4
2025-06-18 00:14
【總結(jié)】第3課時(shí) 利用“角邊角”“角角邊”判定三角形全等學(xué)前溫故新課早知判定三角形全等的方法:(1)三邊分別 的兩個(gè)三角形全等(可以簡(jiǎn)寫成“ ”或“ ”).?(2)兩邊和它們的夾角分別 的兩個(gè)三角形全等(可以簡(jiǎn)寫成“ ”或“ ”).?相等邊邊邊
2025-06-19 18:45
【總結(jié)】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-15 12:08
【總結(jié)】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階
2025-06-14 12:14
【總結(jié)】第13章全等三角形13.2三角形全等的判定1.全等三角形2.全等三角形的判定條件目標(biāo)突破總結(jié)反思第13章全等三角形知識(shí)目標(biāo)三角形全等的判定知識(shí)目標(biāo)1.通過回憶全等三角形、畫一個(gè)三角形關(guān)于某直線對(duì)稱的圖形,在觀察、討論中進(jìn)一步掌握全等三角形的有關(guān)概念及性質(zhì),會(huì)準(zhǔn)確找出全等三角
2025-06-17 19:12
【總結(jié)】第13章全等三角形三角形全等的判定全等三角形的判定條件1.全等三角形的判定條件(1)對(duì)兩個(gè)斜三角形來說,六個(gè)元素(三條邊、三個(gè)內(nèi)角)中至少要有元素分別對(duì)應(yīng)相等,那么這兩個(gè)三角形才可能全等.(2)兩個(gè)三角形有3組對(duì)應(yīng)相等的元素,那么所有的四種情況是:、、
2025-06-12 06:04
【總結(jié)】第4課時(shí)三邊對(duì)應(yīng)相等的兩個(gè)三角形全等(可以簡(jiǎn)寫為“邊邊邊”或“SSS”)。已知三角形三條邊分別是4cm,5cm,7cm,畫出這個(gè)三角形,把所畫的三角形分別剪下來,并與同伴比一比,發(fā)現(xiàn)什么?探究點(diǎn)一“邊邊邊”思考:你能用“邊邊邊”解釋三角形具有穩(wěn)定性嗎?判斷兩個(gè)三角形全等的推理過程,叫做證明三角形
【總結(jié)】三角形全等的判定第1課時(shí)利用三邊判定三角形全等(SSS)知識(shí)要點(diǎn)基礎(chǔ)練知識(shí)點(diǎn)1三角形全等的判定方法——“邊邊邊”,下列三角形中,與△ABC全等的是(C)A.①B.②C.③D.④知識(shí)要點(diǎn)基礎(chǔ)練,在四邊形ABCD中,AB=CD,AD=BC,O為對(duì)角線AC,BD的交點(diǎn)
2025-06-17 19:14
2025-06-17 19:27
2025-06-13 13:15
2025-06-18 12:55
2025-06-14 13:21
【總結(jié)】三角形全等的判定第3課時(shí)??
2025-06-17 19:07
【總結(jié)】(ASA)(AAS)我們已學(xué)了那些判定三角形全等的方法?
2025-06-12 12:09