freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

小學(xué)奧數(shù)平面幾何五種面積模型-wenkub

2023-04-08 03:09:53 本頁面
 

【正文】 特殊點法.找的特殊點,把點與點重合,那么圖形就可變成右圖: 這樣陰影部分的面積就是的面積,根據(jù)鳥頭定理,則有: .【鞏固】在邊長為6厘米的正方形內(nèi)任取一點,將正方形的一組對邊二等分,另一組對邊三等分,分別與點連接,求陰影部分面積. 【解析】 (法1)特殊點法.由于是正方形內(nèi)部任意一點,可采用特殊點法,假設(shè)點與點重合,則陰影部分變?yōu)槿缟现袌D所示,圖中的兩個陰影三角形的面積分別占正方形面積的和,所以陰影部分的面積為平方厘米.(法2)連接、.由于與的面積之和等于正方形面積的一半,所以上、下兩個陰影三角形的面積之和等于正方形面積的,同理可知左、右兩個陰影三角形的面積之和等于正方形面積的,所以陰影部分的面積為平方厘米.【例 3】 如圖所示,長方形內(nèi)的陰影部分的面積之和為70,四邊形的面積為 .【解析】 利用圖形中的包含關(guān)系可以先求出三角形、和四邊形的面積之和,以及三角形和的面積之和,進而求出四邊形的面積.由于長方形的面積為,所以三角形的面積為,所以三角形和的面積之和為;又三角形、和四邊形的面積之和為,所以四邊形的面積為.另解:從整體上來看,四邊形的面積三角形面積三角形面積白色部分的面積,而三角形面積三角形面積為長方形面積的一半,即60,白色部分的面積等于長方形面積減去陰影部分的面積,即,所以四邊形的面積為.【鞏固】如圖,長方形的面積是36,是的三等分點,則陰影部分的面積為 . 【解析】 如圖,連接.根據(jù)蝶形定理,所以;,所以.又,所以陰影部分面積為:.【例 4】 已知為等邊三角形,面積為400,、分別為三邊的中點,已知甲、乙、丙面積和為143,求陰影五邊形的面積.(丙是三角形)【解析】 因為、分別為三邊的中點,所以、是三角形的中位線,也就與對應(yīng)的邊平行,根據(jù)面積比例模型,三角形和三角形的面積都等于三角形的一半,即為200.根據(jù)圖形的容斥關(guān)系,有,即,所以.又,所以.【例 5】 如圖,已知,線段將圖形分成兩部分,左邊部分面積是38,右邊部分面積是65,那么三角形的面積是 . 【解析】 連接,.根據(jù)題意可知,;;所以,于是:;;可得.故三角形的面積是40.【例 6】 如圖在中,分別是上的點,且,平方厘米,求的面積. 【解析】 連接,所以,設(shè)份,則份,平方厘米,所以份是平方厘米,份就是平方厘米,的面積是平方厘米.由此我們得到一個重要的定理,共角定理:共角三角形的面積比等于對應(yīng)角(相等角或互補角)兩夾邊的乘積之比 .【鞏固】如圖,三角形中,是的5倍,是的3倍,如果三角形的面積等于1,那么三角形的面積是多少? 【解析】 連接.∵ ∴又∵∴,∴.【鞏固】如圖,三角形ABC被分成了甲(陰影部分)、乙兩部分,乙部分面積是甲部分面積的幾倍? 【解析】 連接.∵,∴,又∵,∴,∴,.【例 7】 如圖在中,在的延長線上,在上,且,平方厘米,求的面積. 【解析】 連接, ,所以,設(shè)份,則份,平方厘米,所以份是平方厘米,份就是平方厘米,的面積是平方厘米.由此我們得到一個重要的定理,共角定理:共角三角形的面積比等于對應(yīng)角(相等角或互補角)兩夾邊的乘積之比【例 8】 如圖,平行四邊形,平行四邊形的面積是, 求平行四邊形與四邊形的面積比. 【解析】 連接、.根據(jù)共角定理 ∵在和中,與互補,∴.又,所以.同理可得,.所以.所以.【例 9】 如圖所示的四邊形的面積等于多少?【解析】 題目中要求的四邊形既不是正方形也不是長方形,難以運用公式直接求面積.我們可以利用旋轉(zhuǎn)的方法對圖形實施變換:把三角形繞頂點逆時針旋轉(zhuǎn),使長為的兩條邊重合,此時三角形將旋轉(zhuǎn)到三角形 ,通過旋轉(zhuǎn)后所得到的新圖形是一個邊長為的正方形,且這個正方形的面積就是原來四邊形的面積.因此,原來四邊形的面積為.(也可以用勾股定理)【例 10】 如圖所示,中,以為一邊向外作正方形,中心為,求的面積. 【解析】 如圖,將沿著點順時針旋轉(zhuǎn),到達的位置.由于,所以.而,所以,那么、三點在一條直線上.由于,所以是等腰直角三角形,且斜邊為,所以它的面積為.根據(jù)面積比例模型,的面積為.【例 11】 如圖,以正方形的邊為斜邊在正方形內(nèi)作直角三角形,、交于.已知、的長分別為、求三角形的面積. 【解析】 如圖,連接,以點為中心,將順時針旋轉(zhuǎn)到的位置.那么,而也是,所以四邊形是直角梯形,且,所以梯形的面積為:().又因為是直角三角形,根據(jù)勾股定理,所以().那么(),所以().
點擊復(fù)制文檔內(nèi)容
研究報告相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1