【總結(jié)】課程名稱:應(yīng)用數(shù)學(xué)主講教師:黃榕波聯(lián)系電話:39352183郵箱:第一章行列式§2二階與三階行列式?二階行列式引入?三階行列式?小結(jié)思考題由四個數(shù)排成二行二列(橫排稱行、豎排稱列)的數(shù)表)4(22211211aaaa)5(4
2025-05-04 12:33
【總結(jié)】主講:郭智第四章線性方程組§1齊次線性方程組§2非齊次線性方程組§4-1加減消元法·消元法求解·解的存在性問題一、消元法設(shè)線性方程a11x1+a12x2+…+anxn=b1a21x1+a22x2+…+a2nxn=b2…
2025-10-07 21:32
【總結(jié)】習(xí)題設(shè)行列式,則第四行各元素余子式之和的值為.2235007022220403???D111100
2025-01-17 13:25
【總結(jié)】第二章行列式行列式在線性代數(shù)中是一個有用的工具,利用它不僅可以表述n階矩陣為可逆矩陣的條件;而且可導(dǎo)出逆矩陣公式及著名的克拉默法則。本章在二三階行列式定義的基礎(chǔ)上,歸納出一般n階行列式的定義,然后討論行列式的基本性質(zhì)及其應(yīng)用。用消元法解二元線性方程組一、二階行列式的引入方程組的解為由方程組的四
2025-01-19 10:01
【總結(jié)】行列式的性質(zhì)?行列式的性質(zhì)?余子式與代數(shù)余子式?行列式按行(列)展開法則一、行列式的性質(zhì)性質(zhì)1行列式與它的轉(zhuǎn)置行列式相等.行列式稱為行列式的轉(zhuǎn)置行列式.TDD記nnaaa?2211???nnaaa2112??21
2025-01-19 19:05
【總結(jié)】線性代數(shù)教學(xué)改革李尚志教授中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)系空間為體,矩陣為用?研究對象幾何:線性空間(向量)?研究工具代數(shù):矩陣運(yùn)算?向量(問題)modeling?矩陣語言描述?矩陣運(yùn)算解決?
2025-07-21 04:22
【總結(jié)】第二章矩陣?1.矩陣的概念;?2.矩陣的代數(shù)運(yùn)算;?3.矩陣的初等變換;?4.矩陣的求逆運(yùn)算;?5.分塊矩陣。一.矩陣的概念?方程組???????????????????mnmnmmnnnnbxaxaxabxaxaxabxaxaxa
2025-08-05 11:00
【總結(jié)】利用范德蒙行列式計算例計算利用范德蒙行列式計算行列式,應(yīng)根據(jù)范德蒙行列式的特點,將所給行列式化為范德蒙行列式,然后根據(jù)范德蒙行列式計算出結(jié)果。.333222111222nnnDnnnn?????????,于是得到增至冪次數(shù)便從則方若提取各行的公因子,遞升至而是由
2025-04-30 05:22
【總結(jié)】MATLAB與線性代數(shù)的基本運(yùn)算西安電子科技大學(xué)一、矩陣的基本輸入在MATLAB命令窗口輸入:A=[1,2,3;2,3,4]或A=[123234]二、產(chǎn)生特殊矩陣的函數(shù)zeros創(chuàng)建零矩陣
2025-10-09 16:05
【總結(jié)】廣州鐵路職業(yè)技術(shù)學(xué)院(ZHOU)線性代數(shù)行列式.矩陣的概念和運(yùn)算.逆矩陣.矩陣的初等變換.一般線性方程組.廣州鐵路職業(yè)技術(shù)學(xué)院(ZHOU)行列式主要內(nèi)容:1.二階行列式.2.三階行列式.3.n階行列式.4.行列式的性質(zhì).5.克
2025-05-12 14:27
【總結(jié)】線性代數(shù)部分行列式部分n階行列式的定義:,||,.ijnijaaijn為簡記為數(shù)稱為階行列第行第列的式元素12121211121212221212()(1)nnnnnnppnpnnnnApp
2025-07-24 05:32
【總結(jié)】第2章矩陣的初等變換與線性方程組矩陣的初等變換初等矩陣矩陣的秩線性方程組的解矩陣的初等變換矩陣的初等變換例用消元法解線性方程組???????????????7382273221321321xxxxxxxx?????
2025-01-19 18:18
2025-05-01 22:18
【總結(jié)】ProfLiubiyuMatrix(matrices)矩陣Acolumnvector行向量Asquarematrix方陣Arowvector列向量Adiagonalmatrix對角陣Anidentitymatrix單位陣Anuppertriangularmatrix上
【總結(jié)】2021/11/101線性代數(shù)第14講二次型2021/11/102二次型就是二次多項式.在解析幾何中討論的有心二次曲線,當(dāng)中心與坐標(biāo)原點重合時,其一般方程是ax2+2bxy+cy2=f(1)方程的左端就是x,y的一個二次齊次多項式.為了便于研究這個二次曲線的幾何性質(zhì),通過基變換(坐標(biāo)變換)
2025-10-10 01:08