【正文】
田 一個(gè)基于 DSP 高速度傳感器控制無(wú)刷直流電機(jī) (無(wú)刷直流 )汽車使用直流環(huán)節(jié)電壓控制方案被提出了。另一方面,使用的直流母線電壓控制方案,變頻器操作與方波 120176。實(shí)際應(yīng)用變換議題延遲的一個(gè)高速度的無(wú)傳感器控制進(jìn)行了討論。特別是 ,為電動(dòng)機(jī)建在一個(gè)完全密封壓縮機(jī)、軸傳感器是難以運(yùn)用由于傳感器可靠性降低高溫需要額外的導(dǎo)線。要克服這些弊端 ,無(wú)位置傳感器無(wú)刷直流電機(jī)控制技術(shù)提出了一個(gè) [1 ~ 5]。最近,以提高驅(qū)動(dòng)器 E 的效率,并提供所需的電流波形,一個(gè)傳感器控制計(jì)劃使用準(zhǔn)電流源逆變器已提出 [6]。 本文提出了一種基于 DSP 高速無(wú)刷直流電機(jī)無(wú)位置傳感器控制使用直流環(huán)節(jié)電壓控制方案。利用這項(xiàng)技術(shù) ,因?yàn)殡妷嚎刂坪妥儞Q就可以實(shí)現(xiàn)獨(dú)立 ,如運(yùn)算可以交換延遲傳統(tǒng) PWM方法二段式激勵(lì)是 不存在的。檢測(cè)變換信號(hào)用于申請(qǐng)適當(dāng)?shù)南乱粋€(gè)序列 ,得到了轉(zhuǎn)速逆變器在 DSP。 無(wú)刷直 流電機(jī)的無(wú)傳感器控制 一個(gè)無(wú)刷直流電機(jī)本文認(rèn)為由永磁體安裝對(duì)轉(zhuǎn)子表面和三相集中而流離失所的定子 120 度。這種類型在 3 展 ,可以有效進(jìn)行非全相利用得到的轉(zhuǎn)子位置信息。因此 ,該檢測(cè)方案本文采用?;诖朔椒▓?zhí)行 PWM(脈寬調(diào)制 ),脈寬調(diào)制方案的經(jīng)典歌曲了單極和雙相性精神交換的方法。此外,基于位置的脈寬調(diào)制疊加,單極開(kāi)關(guān)的方法是分類為持續(xù)的階段,將相位調(diào)制,上下開(kāi)關(guān)開(kāi)關(guān)脈寬調(diào)制,脈寬調(diào)制。 圖 1 顯示 PWM 開(kāi)關(guān)周期和 PWM 方案 2 相勵(lì)磁整流在瞬間之間的關(guān)系。然而 ,由于運(yùn)算可以交換即時(shí) 以同步進(jìn)行 ,與去 年底目前 PWM 周期開(kāi)始下一個(gè)逆變器順序圖 1(b),這是一般使 4 用方法。 例如 ,當(dāng)一個(gè)兩極電動(dòng)機(jī)轉(zhuǎn)速為 50000 轉(zhuǎn) /分 ,60 度間隔 200?秒。因此 ,為了避免不良變換延遲 ,接下來(lái)的逆變器應(yīng)用序列一旦變換信號(hào)中斷發(fā)生。因此,對(duì)正在進(jìn)行的和持續(xù)的 PWM 方法在圖 1( c)計(jì)劃階段,可以是一個(gè)很高的速度傳感器控制的首選方式。僅為 ,導(dǎo)致不平等的 PWM 脈沖數(shù) 3 或 4 在 60 度間隔。 6 1 Electric Power Components and Systems, 30:889–900, 2020 Copyright 174。C [1]. An absolute sensor is generally speed limited to about 6000 rpm and a resolver needs a special external circuit. Also, the sensor accuracy may be affected by the accuracy of the mounting. To overe these drawbacks, sensorless control techniques for a BLDC motor have been proposed [1_5]. There are two categories of position detection schemes, namely, the method using the back EMF of the motor [2] and themethod based on the detection of the conducting interval of freewheeling diodes [3]. In the existing sensorless control schemes, the PWM technique is generally used for a speed control. However, since the PWM and inverter mutation cannot be performed independently, a signi cant mutation delay may exist in a high speed region. Recently, to improve the drive effciency and provide the desired current waveform, a sensorless control scheme using a quasicurrent source inverter has been proposed [6]. Such a circuit arrangement is known as a variable DC link inverter [7].In this scheme, the inverter frequency is controlled to supply threephase rectangular current with a pulse width of 120176。 period [8]. This excitation scheme does not require dead time of the power devices, and furthermore, the unconducting openphase can be usefully utilized to obtain the rotor 4 position information. The rotor position information are generally obtained from the indirect detection method using the motor back EMF [1_4]. In [2], the rotor position has been estimated from the integration of the back EMF waveform. This method is known to provide the advantages such as the reduced switching noise sensitivity and automatic adjustment of the switching instants without the phase shift of 30176。interval, and in the offgoing phase PWM scheme, vice versa [3, 4].In the upper switch PWM scheme, the PWM is executed only on the upper one of two active switches, and in the lower switch PWM scheme, vice versa. Depending on the 5 used PWM scheme, this control technique may cause a mutation delay or an irregular switching frequency of the power devices in a high speed sensorless control. Figure 1 shows the relation between the PWM switching period and mutating instan