freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸勾股定理選擇題(含答案)(1)-wenkub

2025-04-01 23 本頁(yè)面
 

【正文】 腰三角形的性質(zhì)、垂直平分線的性質(zhì)、兩點(diǎn)之間線段最短等知識(shí)點(diǎn),利用兩點(diǎn)之間線段最短和垂線段最短確認(rèn)的最小值是解題關(guān)鍵.8.D解析:D【分析】先用已知條件利用SAS的三角形全等的判定定理證出△EAB≌△CAM,之后利用全等三角形的性質(zhì)定理分別可得,然后設(shè),繼而可分別求出,所以;易證Rt△ACB≌Rt△DCG(HL),從而得,然后代入所求數(shù)據(jù)即可得的值.【詳解】解:∵在△EAB和△CAM中 ,∴△EAB≌△CAM(SAS),∴,∴,∴,設(shè),則,∴;∵ 在Rt△ACB和Rt△DCG中,Rt△ACB≌Rt△DCG(HL),∴?!唷螾4P6P5=75176?!唷螾3P4P2=45176?!驹斀狻拷猓涸O(shè)直角三角形的兩條直角邊分別為x、y,∵斜邊上的中線為d,∴斜邊長(zhǎng)為2d,由勾股定理得,x2+y2=4d2,∵直角三角形的面積為S,∴,則2xy=4S,即(x+y)2=4d2+4S,∴ ∴這個(gè)三角形周長(zhǎng)為: ,故選:D.【點(diǎn)睛】本題考查的是勾股定理的應(yīng)用,直角三角形的兩條直角邊長(zhǎng)分別是a,b,斜邊長(zhǎng)為c,那么a2+b2=c2.4.C解析:C【分析】根據(jù)勾股定理及直角三角形的中線、翻折得CD=DE=BD=5,CE=AC=6,作DH⊥BE于H,EG⊥CD于G,證明△DHE≌△EGD,利用勾股定理求出,即可得到BE.【詳解】∵∠BCA=90°,AC=6,BC=8,∴,∵D是AB的中點(diǎn),∴AD=BD=CD=5,由翻折得:DE=AD=5,∠EDC=∠ADC,CE=AC=6,∴BD=DE,作DH⊥BE于H,EG⊥CD于G,∴∠DHE=∠EGD=90,∠EDH=∠BDE=(1802∠EDC)=90∠EDC,∴∠DEB= 90∠EDH=90(90∠EDC)=∠EDC,∵DE=DE,∴△DHE≌△EGD,∴DH=EG,EH=DG,設(shè)DG=x,則CG=5x,∵=,∴,∴,∴,∴BE=2EH=,故選:C.【點(diǎn)睛】此題考查翻折的性質(zhì),勾股定理,等腰三角形的性質(zhì),將求BE轉(zhuǎn)換為求其一半的長(zhǎng)度的想法是關(guān)鍵,由此作垂線,證明△DHE≌△EGD,由此求出BE的長(zhǎng)度.5.D解析:D【分析】過(guò)點(diǎn)C作CH⊥AB,連接CD,根據(jù)等腰三角形的三線合一的性質(zhì)及勾股定理求出CH,再利用即可求出答案.【詳解】如圖,過(guò)點(diǎn)C作CH⊥AB,連接CD, ∵AC=BC,CH⊥AB,AB=8,∴AH=BH=4,∵AC=5,∴,∵,∴,∴,∴DE+DF=,故選:D.【點(diǎn)睛】此題考查等腰三角形三線合一的性質(zhì),勾股定理解直角三角形,根據(jù)題意得到的思路是解題的關(guān)鍵,依此作輔助線解決問(wèn)題.6.D解析:D【分析】根據(jù)已知利用等腰三角形的性質(zhì)及三角形外角的性質(zhì),找出圖中存在的規(guī)律,求出鋼條的根數(shù),然后根據(jù)最后一根鋼條與射線AB的焊接點(diǎn)P到A點(diǎn)的距離即AP5為4+2,設(shè)AP1=a,作P2D⊥AB于點(diǎn)D,再用含a的式子表示出P1P3,P3P5,從而可求出a的值,即得出每根鋼條的長(zhǎng)度,從而可以求得所有鋼條的總長(zhǎng).【詳解】解:如圖,∵AP1與各鋼條的長(zhǎng)度相等,∴∠A=∠P1P2A=15176。AC=7,∠BAC的角平分線AD交BC于點(diǎn)D,則點(diǎn)D到AB的距離是(??) A.3 B.4 C. D.27.如圖,在矩形ABCD中,AB=8,BC=4,將矩形沿AC折疊,點(diǎn)B落在點(diǎn)B′處,則重疊部分△AFC的面積為(  )A.12 B.10C.8 D.628.如圖,在等腰中,F(xiàn)是AB邊上的中點(diǎn),點(diǎn)D、E分別在AC、BC邊上運(yùn)動(dòng),且保持.連接DE、DF、EF.在此運(yùn)動(dòng)變化的過(guò)程中,下列結(jié)論:①是等腰直角三角形;②四邊形CDFE不可能為正方形;③DE長(zhǎng)度的最小值為4;④四邊形CDFE的面積保持不變;⑤△CDE面積的最大值為8.其中正確的結(jié)論是( )A.①④⑤ B.③④⑤ C.①③④ D.①②③29.如圖,設(shè)正方體ABCDA1B1C1D1的棱長(zhǎng)為1,黑、白兩個(gè)甲殼蟲(chóng)同時(shí)從點(diǎn)A出發(fā),以相同的速度分別沿棱向前爬行,黑甲殼蟲(chóng)爬行的路線是AA1→A1D1→…,白甲殼蟲(chóng)爬行的路線是AB→BB1→…,并且都遵循如下規(guī)則:所爬行的第n+2與第n條棱所在的直線必須既不平行也不相交(其中n是正整數(shù)).那么當(dāng)黑、白兩個(gè)甲殼蟲(chóng)各爬行完第2017條棱分別停止在所到的正方體頂點(diǎn)處時(shí),它們之間的距離是( )A.0 B.1 C. D.30.如圖1,分別以直角三角形三邊為邊向外作等邊三角形,面積分別為,;如圖2,分別以直角三角形三邊長(zhǎng)為直徑向外作半圓,面積分別為,其中,則( ).A.86 B.61 C.54 D.48【參考答案】***試卷處理標(biāo)記,請(qǐng)不要?jiǎng)h除一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.C解析:C【分析】先過(guò)點(diǎn)E作EG⊥CD于G,再判定△BCD、△ABD都是等腰直角三角形,并求得其邊長(zhǎng),最后利用等腰直角三角形,求得EG的長(zhǎng),進(jìn)而得到△EDC的面積.【詳解】解:過(guò)點(diǎn)E作EG⊥CD于G,又∵CF平分∠BCD,BD⊥BC,∴BE=GE,在Rt△BCE和Rt△GCE中,∴Rt△BCE≌Rt△GCE,∴BC=GC,∵BD⊥BC,BD=BC,∴△BCD是等腰直角三角形,∴∠BDC=45176。初中數(shù)學(xué)試卷分類匯編易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題(含答案)(1)一、易錯(cuò)易錯(cuò)壓軸選擇題精選:勾股定理選擇題1.在四邊形ABCD中,AB∥CD,∠A=90176?!逜B//CD,∴∠ABD=45176?!唷螾2P1P3=30176?!唷螾4P3P5=60176?!?
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖片鄂ICP備17016276號(hào)-1