freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

高中數(shù)學(xué)新課程創(chuàng)新教學(xué)設(shè)計(jì)案例50篇35-39_平面向量及其應(yīng)用共五則范文(已修改)

2024-10-28 13:44 本頁(yè)面
 

【正文】 第一篇:高中數(shù)學(xué)新課程創(chuàng)新教學(xué)設(shè)計(jì)案例50篇3539_平面向量及其應(yīng)用向量的概念教材分析向量是近代數(shù)學(xué)中重要和基本概念之一,它集“大小”與“方向”于一身,融“數(shù)”、“形”于一體,具有幾何形式與代數(shù)形式的“雙重身份”,是高中數(shù)學(xué)重要的知識(shí)網(wǎng)絡(luò)的交匯點(diǎn),也是數(shù)形結(jié)合思想的重要載體.這節(jié)通過(guò)對(duì)物理中的位移和力的歸納,抽象、概括出向量的概念、有向線段、向量的表示、零向量、單位向量、平行向量、相等向量、共線向量的準(zhǔn)確含義.與數(shù)學(xué)中的許多概念一樣,都可以追溯它的實(shí)際背景.這節(jié)的重點(diǎn)是向量的概念、相等向量的概念和向量的幾何表示等.難點(diǎn)是向量的概念.教學(xué)目標(biāo),體驗(yàn)數(shù)學(xué)概念的形成過(guò)程,培養(yǎng)學(xué)生的抽象概括能力和科學(xué)的思維方法,使學(xué)生逐步由感性思維上升為理性思維.,會(huì)用有向線段表示向量,會(huì)判斷零向量,單位向量,平行的、相等的、共線的向量.教學(xué)設(shè)計(jì)一、問(wèn)題情景數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的科學(xué).思考以下問(wèn)題:,你接觸過(guò)哪些類型的量?這些量本質(zhì)上有何區(qū)別?試描述這些量的本質(zhì)區(qū)別.?二、建立模型 學(xué)生回答:人的身高,年齡,體重;……圖形的面積,體積;物體的密度,質(zhì)量;……物理學(xué)中的重力、彈力、拉力,速度、加速度,位移……引導(dǎo)學(xué)生慢慢抽象出數(shù)量(只有大?。┖拖蛄浚扔写笮∮钟蟹较颍┑母拍睿?人們?cè)陂L(zhǎng)期生產(chǎn)生活實(shí)踐中,會(huì)遇到兩種不同類型的量,如身高、體重、面積、體積等,在規(guī)定的單位下,都可以用一個(gè)實(shí)數(shù)表示它們的大小,我們稱之為數(shù)量;另一類,如力、速度、位移等,它們不僅有大小,而且有方向.作用于某物體上的力,它不僅有大小,而且有作用方向;物體運(yùn)動(dòng)的速度既有快慢之分,又有方向的區(qū)別.這類既有數(shù)量特性又有方向特性的量,就是我們要研究的向量.在數(shù)學(xué)上,往往用一條有方向的線段,即有向線段來(lái)表示向量.有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.向量不僅可以用有向線段表示,也可用a,b,c,…表示,還可用表示向量的有向線段的起點(diǎn)和終點(diǎn)字母表示,如就是向量的長(zhǎng)度(模),記作,.長(zhǎng)度為零的向量叫零向量,記作0或1的向量叫作單位向量.方向相同或相反的非零向量叫平行向量,記作a∥b,規(guī)定0∥a(a為任一向量)長(zhǎng)度相等且方向相同的向量叫作相等的向量,記作a=b.任意兩個(gè)相等的非零向量都可用同一條有向線段來(lái)表示,并且與有向線段的起點(diǎn)無(wú)關(guān).在同一平面上,兩個(gè)平行的長(zhǎng)度相等且指向一致的有向線段可以表示同一向量.因?yàn)橄蛄客耆伤姆较蚝湍Q定.任一組平行向量都可以移動(dòng)到同一直線上,因此,平行向量也叫“共線向量”. ,組織學(xué)生討論(1)時(shí)間、路程、溫度、角度是向量嗎?速度、加速度、物體所受重力是向量嗎?(2)兩個(gè)單位向量一定相等嗎?(3)相等向量是平行向量嗎?(4)物理學(xué)中的作用力與反作用力是一對(duì)共線向量嗎?(5)方向?yàn)槟掀?0176。的向量與北偏東60176。的向量是共線向量嗎?強(qiáng)調(diào):大小、方向是向量的兩個(gè)基本要素,當(dāng)且僅當(dāng)兩個(gè)向量的大小和方向兩個(gè)要素完全相同時(shí),兩個(gè)向量才相等.注意:相等向量、平行向量、共線向量之間的異同.三、解釋應(yīng)用 [例 題]如圖,邊長(zhǎng)為1的正六邊形ABCDEF的中心為O,試分別寫出與線的向量,以及單位向量.相等、平行和共解:都是單位向量.[練習(xí)],D,E,F(xiàn)分別是△ABC各邊的中點(diǎn),試寫出圖中與相等的向量.,那么四邊形ABCD的形狀如何?,F(xiàn),P,Q分別是任意四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),對(duì)于,哪些是相等的向量,哪些方向是相反的向量?,點(diǎn)P在點(diǎn)O“東偏北60176。,3cm”處,點(diǎn)Q在點(diǎn)O“南偏西30176。,3cm”處,試畫出點(diǎn)P和Q相對(duì)于點(diǎn)O的向量.,用有向線段分別表示下列各向量.(1)在與水平成120176。角的方向上,一個(gè)大小為50N的拉力.(2)方向東南,8km/h的風(fēng)的速度.(3)向量四、拓展延伸 ,在ABCD中,E,F(xiàn)分別是CD,AD的中點(diǎn),在向量中相等的向量是哪些?為什么?,那么與數(shù)的運(yùn)算類比,向量是否也能進(jìn)行運(yùn)算?向量的概念教材分析向量是近代數(shù)學(xué)中重要和基本概念之一,它集“大小”與“方向”于一身,融“數(shù)”、“形”于一體,具有幾何形式與代數(shù)形式的“雙重身份”,是高中數(shù)學(xué)重要的知識(shí)網(wǎng)絡(luò)的交匯點(diǎn),也是數(shù)形結(jié)合思想的重要載體.這節(jié)通過(guò)對(duì)物理中的位移和力的歸納,抽象、概括出向量的概念、有向線段、向量的表示、零向量、單位向量、平行向量、相等向量、共線向量的準(zhǔn)確含義.與數(shù)學(xué)中的許多概念一樣,都可以追溯它的實(shí)際背景.這節(jié)的重點(diǎn)是向量的概念、相等向量的概念和向量的幾何表示等.難點(diǎn)是向量的概念.教學(xué)目標(biāo),體驗(yàn)數(shù)學(xué)概念的形成過(guò)程,培養(yǎng)學(xué)生的抽象概括能力和科學(xué)的思維方法,使學(xué)生逐步由感性思維上升為理性思維.,會(huì)用有向線段表示向量,會(huì)判斷零向量,單位向量,平行的、相等的、共線的向量.任務(wù)分析在這之前,學(xué)生接觸較多的是只有大小的量(數(shù)量).其實(shí)生活中還有一種不同于數(shù)量的量———向量.剛一開始,學(xué)生很不習(xí)慣,但可適時(shí)地結(jié)合實(shí)例,逐步讓學(xué)生理解向量的兩個(gè)基本要素———大小和方向,再讓學(xué)生于實(shí)際問(wèn)題中識(shí)別哪些是向量,哪些是數(shù)量.這樣由具體到抽象,再由抽象到具體;由實(shí)踐到理論,再由理論到實(shí)踐,可使學(xué)生比較容易地理解.緊緊抓住向量的大小和方向,便于理解兩個(gè)向量沒(méi)有大小之分,只有相等與不相等、平行與共線等.要結(jié)合例、習(xí)題讓學(xué)生很好地理解相等向量(向量可以平移).這些均可為以后用向量處理幾何等問(wèn)題帶來(lái)方便.教學(xué)設(shè)計(jì)一、問(wèn)題情景數(shù)學(xué)是研究數(shù)量關(guān)系和空間形式的科學(xué).思考以下問(wèn)題:,你接觸過(guò)哪些類型的量?這些量本質(zhì)上有何區(qū)別?試描述這些量的本質(zhì)區(qū)別.?二、建立模型 學(xué)生回答:人的身高,年齡,體重;……圖形的面積,體積;物體的密度,質(zhì)量;……物理學(xué)中的重力、彈力、拉力,速度、加速度,位移……引導(dǎo)學(xué)生慢慢抽象出數(shù)量(只有大?。┖拖蛄浚扔写笮∮钟蟹较颍┑母拍睿?人們?cè)陂L(zhǎng)期生產(chǎn)生活實(shí)踐中,會(huì)遇到兩種不同類型的量,如身高、體重、面積、體積等,在規(guī)定的單位下,都可以用一個(gè)實(shí)數(shù)表示它們的大小,我們稱之為數(shù)量;另一類,如力、速度、位移等,它們不僅有大小,而且有方向.作用于某物體上的力,它不僅有大小,而且有作用方向;物體運(yùn)動(dòng)的速度既有快慢之分,又有方向的區(qū)別.這類既有數(shù)量特性又有方向特性的量,就是我們要研究的向量.在數(shù)學(xué)上,往往用一條有方向的線段,即有向線段來(lái)表示向量.有向線段的長(zhǎng)度表示向量的大小,有向線段的方向表示向量的方向.向量不僅可以用有向線段表示,也可用a,b,c,…表示,還可用表示向量的有向線段的起點(diǎn)和終點(diǎn)字母表示,如就是向量的長(zhǎng)度(模),記作,.長(zhǎng)度為零的向量叫零向量,記作0或1的向量叫作單位向量.方向相同或相反的非零向量叫平行向量,記作a∥b,規(guī)定0∥a(a為任一向量)長(zhǎng)度相等且方向相同的向量叫作相等的向量,記作a=b.任意兩個(gè)相等的非零向量都可用同一條有向線段來(lái)表示,并且與有向線段的起點(diǎn)無(wú)關(guān).在同一平面上,兩個(gè)平行的長(zhǎng)度相等且指向一致的有向線段可以表示同一向量.因?yàn)橄蛄客耆伤姆较蚝湍Q定. 任一組平行向量都可以移動(dòng)到同一直線上,因此,平行向量也叫“共線向量”. ,組織學(xué)生討論(1)時(shí)間、路程、溫度、角度是向量嗎?速度、加速度、物體所受重力是向量嗎?(2)兩個(gè)單位向量一定相等嗎?(3)相等向量是平行向量嗎?(4)物理學(xué)中的作用力與反作用力是一對(duì)共線向量嗎?(5)方向?yàn)槟掀?0176。的向量與北偏東60176。的向量是共線向量嗎?強(qiáng)調(diào):大小、方向是向量的兩個(gè)基本要素,當(dāng)且僅當(dāng)兩個(gè)向量的大小和方向兩個(gè)要素完全相同時(shí),兩個(gè)向量才相等.注意:相等向量、平行向量、共線向量之間的異同.三、解釋應(yīng)用 [例 題]如圖,邊長(zhǎng)為1的正六邊形ABCDEF的中心為O,試分別寫出與線的向量,以及單位向量.相等、平行和共解:都是單位向量.[練習(xí)],D,E,F(xiàn)分別是△ABC各邊的中點(diǎn),試寫出圖中與相等的向量.,那么四邊形ABCD的形狀如何?,F(xiàn),P,Q分別是任意四邊形ABCD的邊AB,BC,CD,DA的中點(diǎn),對(duì)于,哪些是相等的向量,哪些方向是相反的向量?,點(diǎn)P在點(diǎn)O“東偏北60176。,3cm”處,點(diǎn)Q在點(diǎn)O“南偏西30176。,3cm”處,試畫出點(diǎn)P和Q相對(duì)于點(diǎn)O的向量.,用有向線段分別表示下列各向量.(1)在與水平成120176。角的方向上,一個(gè)大小為50N的拉力.(2)方向東南,8km/h的風(fēng)的速度.(3)向量四、拓展延伸,在ABCD中,E,F(xiàn)分別是CD,AD的中點(diǎn),在向量中相等的向量是哪些?為什么?,那么與數(shù)的運(yùn)算類比,向量是否也能進(jìn)行運(yùn)算?向量加法運(yùn)算及其幾何意義教材分析引入向量后,考查向量的運(yùn)算及運(yùn)算律,是數(shù)學(xué)研究中的基本的問(wèn)題.教材中向量的加法運(yùn)算是以位移的合成、力的合成等物理模型為背景引入的,在此基礎(chǔ)上抽象概括了向量加法的意義,總結(jié)了向量加法的三角形法則、平行四邊形法則.向量加法的運(yùn)算律,教材是通過(guò)“探究”和構(gòu)造圖形引導(dǎo)學(xué)生類比數(shù)的運(yùn)算律,驗(yàn)證向量的交換律和結(jié)合律.例2是一道實(shí)際問(wèn)題,主要是要讓學(xué)生體會(huì)向量加法的實(shí)際意義.這節(jié)課的重點(diǎn)是向量加法運(yùn)算(三角形法則、平行四邊形法則),向量的運(yùn)算律.難點(diǎn)是對(duì)向量加法意義的理解和認(rèn)識(shí).教學(xué)目標(biāo)、力的合成等實(shí)例,認(rèn)識(shí)理解向量加法的意義,體驗(yàn)數(shù)學(xué)知識(shí)發(fā)生、發(fā)展的過(guò)程.,熟練運(yùn)用三角形法則和平行四邊形法則作向量的和向量.,能熟練地運(yùn)用它們進(jìn)行向量運(yùn)算.,由具體到抽象,培養(yǎng)學(xué)生的探究能力,使學(xué)生數(shù)學(xué)地思考問(wèn)題,數(shù)學(xué)地解決問(wèn)題.任務(wù)分析這節(jié)的主要內(nèi)容是向量加法的運(yùn)算和向量加法的應(yīng)用.對(duì)向量加法運(yùn)算,學(xué)生可能不明白向量可以相加的道理,產(chǎn)生疑惑:向量既有大小、又有方向,難道可以相加嗎?為此,在案例設(shè)計(jì)中,首先回顧物理學(xué)中位移、力的合成,讓學(xué)生體驗(yàn)向量加法的實(shí)際含義,明確向量的加法就是物理學(xué)中的矢量合成.在此基礎(chǔ)上,歸納總結(jié)向量加法的三角形法則和平行四邊形法則.向量加法的運(yùn)算律發(fā)現(xiàn)并不困難,主要任務(wù)是讓學(xué)生對(duì)向量進(jìn)行探究,構(gòu)造圖形進(jìn)行驗(yàn)證.關(guān)于例2的教學(xué),主要是幫助學(xué)生正確理解題意,把問(wèn)題轉(zhuǎn)化為向量加法運(yùn)算.教學(xué)設(shè)計(jì)一、問(wèn)題情境,某物體從A點(diǎn)經(jīng)B點(diǎn)到C點(diǎn),兩次位移點(diǎn)的位移結(jié)果相同.,的結(jié)果,與A點(diǎn)直接到C,表示橡皮筋在兩個(gè)力F1,F(xiàn)2的作用下,沿GE的方向伸長(zhǎng)了EO,與力F的作用結(jié)果相同.位移認(rèn)為:與合成為等效,力F與分力F1,F(xiàn)2的共同作用等效,這時(shí)我們可以與、分力F1與F2某種運(yùn)算的結(jié)果.?dāng)?shù)的加法啟發(fā)我們,F(xiàn)分別是位移位移、力的合成可看作數(shù)學(xué)上的向量加法.,歸納并抽象概括出向量加法的定義已知非零向量a,b(如圖373),在平面內(nèi)任取一點(diǎn)A,作向量,則向量叫a與b的和,記作a+b,即a+b=+=a,=.=b,再作求兩個(gè)向量和的運(yùn)算,叫作向量的加法.這種求向量和的作圖法則,稱為向量求和的三角形法則,我們規(guī)定0+a=a+0=a.,組織學(xué)生討論(1)根據(jù)力的合成的平行四邊形法則,你能定義兩個(gè)向量的和嗎?(2)當(dāng)a與b平行時(shí),如何作出a+b?強(qiáng)調(diào):向量的和仍是一個(gè)向量.用三角形法則求和時(shí),作圖要求兩向量首尾相連;而用平行四邊形法則求和時(shí),作圖要求兩向量的起點(diǎn)平移在一起.(3)實(shí)數(shù)的運(yùn)算和運(yùn)算律緊密聯(lián)系,類似地,向量的加法是否也有運(yùn)算律呢?首先,讓學(xué)生回憶實(shí)數(shù)加法運(yùn)算律,類比向量加法運(yùn)算律.向量加法的交換律由平行四邊形法則容易驗(yàn)證.向量加法的結(jié)合律的驗(yàn)證則比較困難,教學(xué)時(shí),應(yīng)放手讓學(xué)生進(jìn)行充分探索.最后通過(guò)下面的兩個(gè)圖形驗(yàn)證加法結(jié)合律.三、解釋應(yīng)用 [例 題],b,就(1)a與b不共線,(2)a與b共線,分別求作向量a+b. 注:要求寫出作法,規(guī)范解題格式.,常常通過(guò)輪船進(jìn)行運(yùn)輸.一艘輪船從長(zhǎng)江南岸A點(diǎn)出發(fā),以5km/h的速度向垂直于對(duì)岸的方向行駛,同時(shí)江水的速度為向東2km/h.(1)試用向量表示江水速度、船速以及船實(shí)際航行的速度.(2)求船實(shí)際航行的速度的大小與方向(速度的大小保留2個(gè)有效數(shù)字,方向用與江水速度間的夾角表示,精確到度).[練習(xí)],已知a,b,畫圖表示a+b.,F(xiàn)2的夾角是直角,合力F與F1的夾角是60176。,|F|=10N,求F1和F2的大小.△ABC中,…An中,計(jì)算四、拓展延伸,b,探索|a+b|與|a|+|b|的大小,并指出取“=”號(hào)的條件. ,你可能選擇不同的始點(diǎn)求和.你有沒(méi)有想過(guò),選擇不同的始點(diǎn)作出的向量和都相等嗎?你可能認(rèn)為,這是“顯然”對(duì)的,你能證明這個(gè)問(wèn)題嗎?平面向量的基本定理教材分析平面向量的基本定理是說(shuō)明同一平面內(nèi)任一向量都可以表示為兩個(gè)不共線向量的線性組合,它是平面向量坐標(biāo)表示的基礎(chǔ),也是平面圖形中任一向量都可由某兩個(gè)不共線向量量化的依據(jù).這節(jié)內(nèi)容以共線向量為基礎(chǔ),通過(guò)把一個(gè)向量在其他兩個(gè)向量上的分解,說(shuō)明了該定理的本質(zhì).教學(xué)時(shí)無(wú)須嚴(yán)格證明該定理,只要讓學(xué)生弄清定理的條件和結(jié)論,會(huì)用該定理就可以了.向量的加法、減法、實(shí)數(shù)與向量的積的混合運(yùn)算稱為向量的線性運(yùn)算,也叫“向量的初等運(yùn)算”.由平面向量的基本定理,知任一平面內(nèi)的直線型圖形都可表示為某些向量的線性組合,這樣在證明幾何命題時(shí),可先把已知和結(jié)論表示成向量形式,再通過(guò)向量的運(yùn)算,有時(shí)能很容易證明幾何命題.因此,向量是數(shù)學(xué)中證明幾何命題的有效工具之一.為降低難度,目前要求用向量表示幾何關(guān)系,而不要求用向量證明幾何命題.平面向量的基本定理的理解是學(xué)習(xí)的難點(diǎn),而應(yīng)用基本向量表示平面內(nèi)的某一向量是學(xué)習(xí)的重點(diǎn).教學(xué)目標(biāo),會(huì)用它來(lái)表示平面圖形中任一向量,為向量坐標(biāo)化打下基礎(chǔ).、抽象和概括,體驗(yàn)數(shù)學(xué)定理的產(chǎn)生、形成過(guò)程,提升學(xué)生的抽象和概括能力. ,增強(qiáng)向量的應(yīng)用意識(shí),進(jìn)一步體會(huì)向量是處理幾何問(wèn)題的強(qiáng)有力的工具之一.任務(wù)分析這節(jié)課是在學(xué)生熟悉向量加、減、數(shù)乘線性運(yùn)算的基礎(chǔ)上展開的,為了使學(xué)生理解和掌握好平面向量的基本定理,教學(xué)時(shí),常應(yīng)用構(gòu)造式的作圖方法,同時(shí)采用師生共同操作,增強(qiáng)直觀認(rèn)識(shí),歸納和總結(jié)出任意向量與基本向量的線性組合關(guān)系,并且通過(guò)適當(dāng)?shù)木毩?xí),使學(xué)生進(jìn)一步認(rèn)識(shí)和理解這一基本定理.教學(xué)設(shè)計(jì)一、問(wèn)題情景,(1)已知=a,=b,試用b,b來(lái)表示,;(2)已知=c,=d,試用c,d表示向量,.,e2,試作出向量3e1+2e2,e1-2e2. +λ2e2的向量表示?二、建立模型 (1)由向量加法,知=a+b;由向
點(diǎn)擊復(fù)制文檔內(nèi)容
畢業(yè)設(shè)計(jì)相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1