【總結(jié)】由于向量的線性運(yùn)算和數(shù)量積運(yùn)算具有鮮明的幾何背景,平面幾何的許多性質(zhì),如平移、全等、相似、長(zhǎng)度、夾角都可以由向量的線性運(yùn)算及數(shù)量積表示出來(lái),因此,利用向量方法可以解決平面幾何中的一些問(wèn)題。平面幾何中的向量方法例1、證明平行四邊形四邊平方和等于兩對(duì)角線平方和ABDC已知:平行四邊形ABCD。求證:
2025-08-01 17:29
【總結(jié)】平面向量測(cè)試題一、選擇題:1。已知ABCD為矩形,E是DC的中點(diǎn),且=,=,則=()(A)+(B)-(C)+(D)-2.已知B是線段AC的中點(diǎn),則下列各式正確的是()(A)=-(B)=(C)=(D)=3.已知ABCDEF是正六邊形,且=,=,則=()(A)(B)(C)+(D)4.設(shè),為不共
2025-06-23 01:37
【總結(jié)】第一篇:新課程高中數(shù)學(xué)教學(xué)設(shè)計(jì)與反思 【中學(xué)數(shù)學(xué)教案】 新課程高中數(shù)學(xué)教學(xué)設(shè)計(jì)與反思 鹽津一中張才順 在新課程教學(xué)中,我認(rèn)為應(yīng)注意以下四個(gè)問(wèn)題: 一、教學(xué)設(shè)計(jì)應(yīng)有利于讓學(xué)生學(xué)會(huì)學(xué)習(xí),發(fā)揮學(xué)生...
2024-10-18 20:14
【總結(jié)】高中數(shù)學(xué)必修4平面向量知識(shí)點(diǎn)歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長(zhǎng)度),記作||即向量的大小,記作||向量不能比較大小,但向量的模可以比較大?。诹阆蛄浚洪L(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的
2025-08-11 09:32
【總結(jié)】下列命題:①若是定義在[-1,1]上的偶函數(shù),且在[-1,0]上是增函數(shù),,則②在中,A=B是sinA=sinB的充要條件.③若為非零向量,且,則.④要得到函數(shù)的圖像,只需將函數(shù)的圖像向右平移個(gè)單位.其中真命題的個(gè)數(shù)有 C.3 答案:B來(lái)源:09年陜西西安月考三題型:選擇題,難度:中檔已知向量,,.(
2025-01-14 09:48
【總結(jié)】專題八平面向量一、復(fù)習(xí)要求一.向量有關(guān)概念:1.向量的概念:既有大小又有方向的量,注意向量和數(shù)量的區(qū)別。向量常用有向線段來(lái)表示,注意不能說(shuō)向量就是有向線段,為什么?(向量可以平移)。如:2.零向量:長(zhǎng)度為0的向量叫零向量,記作:,注意零向量的方向是任意的;3.單位向量:長(zhǎng)度為一個(gè)單位長(zhǎng)度的向量叫做單位向量(與共線的單位向量是);4.相等向量:長(zhǎng)度相等且方向相同的
2025-04-17 12:54
【總結(jié)】高中數(shù)學(xué)必修4知識(shí)點(diǎn)總結(jié)平面向量知識(shí)點(diǎn)歸納1向量的概念:①向量:既有大小又有方向的量向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長(zhǎng)度),記作||即向量的大小,記作||向量不能比較大小,但向量的模可以比較大?。诹阆蛄浚洪L(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0
2025-04-04 05:10
【總結(jié)】第一篇:新課程理念下高中數(shù)學(xué)教學(xué)設(shè)計(jì)研究 新課程理念下高中數(shù)學(xué)教學(xué)設(shè)計(jì)研究 ———以“指數(shù)函數(shù)及其性質(zhì)”為例 馬海霞 摘要:我國(guó)數(shù)學(xué)課程一直都在改革,數(shù)學(xué)教育的觀念、課程、教材、教學(xué)、評(píng)價(jià)等的...
2024-10-29 04:20
【總結(jié)】第一篇:新課程理念下高中數(shù)學(xué)教學(xué)設(shè)計(jì)之我見 龍?jiān)雌诳W(wǎng)://. 新課程理念下高中數(shù)學(xué)教學(xué)設(shè)計(jì)之我見作者:劉愛(ài)國(guó) 來(lái)源:《神州·中旬刊》2013年第06期 摘要:高中數(shù)學(xué)教學(xué)過(guò)程中,教師的角色不...
2024-10-06 04:59
【總結(jié)】平面向量應(yīng)用舉例平面幾何中的向量方法問(wèn)題提出t57301p2???????,使得向量可以進(jìn)行線性運(yùn)算和數(shù)量積運(yùn)算,并具有鮮明的幾何背景,從而溝通了平面向量與平面幾何的內(nèi)在聯(lián)系,在某種條件下,平面向量與平面幾何可以相互轉(zhuǎn)化.、垂直、夾角、距離、全等、相似等,是平面幾何中常見的問(wèn)題,而這些問(wèn)題都可以由
2024-11-17 12:03
【總結(jié)】平面向量1向量的概念:①向量:既有大小又有方向的量向量一般用……來(lái)表示,或用有向線段的起點(diǎn)與終點(diǎn)的大寫字母表示,如:幾何表示法,;坐標(biāo)表示法向量的大小即向量的模(長(zhǎng)度),記作||即向量的大小,記作||向量不能比較大小,但向量的模可以比較大?。诹阆蛄浚洪L(zhǎng)度為0的向量,記為,其方向是任意的,與任意向量平行零向量=||=0由于的方向是任意的,且規(guī)定平行于任何向
2025-04-04 05:08
【總結(jié)】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問(wèn)題.——向量法和坐標(biāo)法.,體驗(yàn)向量在解決幾何問(wèn)題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計(jì)問(wèn)題,創(chuàng)設(shè)情境問(wèn)題1:若O為△ABC重心,則=.問(wèn)題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個(gè)四邊形為.
2024-11-19 20:38
【總結(jié)】新課程理念下的高中數(shù)學(xué)教學(xué)感悟以前上課時(shí),我經(jīng)常只顧自己的想法,覺(jué)得講的題目越多越好,很少顧及學(xué)生的思維與感受。慢慢地,發(fā)現(xiàn)學(xué)生上課聽得懂,自己做卻不會(huì),可怕的是,到后來(lái)連學(xué)數(shù)學(xué)的信心也沒(méi)有了。我一直很困惑……自從2001年我考入教育碩士后,有個(gè)學(xué)習(xí)理論強(qiáng)烈震撼了我,那就是建構(gòu)主義學(xué)習(xí)理論——知識(shí)不是通過(guò)教師傳授獲得的,是學(xué)習(xí)者在一定的情景即社會(huì)文化背景下,借助于其他人(包括教師和學(xué)習(xí)伙
2025-06-10 01:55
【總結(jié)】平面向量應(yīng)用舉例命題方向1向量在平面幾何中的應(yīng)用例1求證:直徑所對(duì)的圓周角為直角.[分析]本題實(shí)質(zhì)就是證明AB→2BC→=0.[證明]設(shè)AO→=a,OB→=b,則AB→=a+b,OC→=a,BC→=a-b,|a|=|b|.
2024-11-19 19:09
【總結(jié)】5of5快樂(lè)課堂學(xué)數(shù)學(xué)-多余老師趣講“平面向量”-高中數(shù)學(xué)必修4一、本單元概述向量,最初被應(yīng)用于物理學(xué)。很多物理量如力、速度、位移以及將要學(xué)習(xí)到的電場(chǎng)強(qiáng)度、磁感應(yīng)強(qiáng)度等都是向量。大約公元前350年前,古希臘著名學(xué)者亞里士多德就知道了力可以表示成向量,兩個(gè)力的組合作用可用著名的平行四邊形法則來(lái)得到?!跋蛄俊币辉~來(lái)自力學(xué)、解析幾何中的有向線段。最先使用有向線段表示
2025-08-04 16:32