【總結(jié)】三角函數(shù)模型的簡單應(yīng)用)sin(????xAy振幅初相(x=0時的相位)相位2:T???周期1:2fT????頻率例1.如圖:點O為作簡諧運動的物體的平衡位置,取向右的方向為物體位移的正方向,若已知振幅為3cm,周期為3s,且物體向右運動到距離平衡位置最遠時開始計時。(1
2024-11-18 13:31
【總結(jié)】§3解三角形的實際應(yīng)用舉例(二)課時目標、余弦定理解決生產(chǎn)實踐中的有關(guān)高度的問題.、余弦定理及三角形面積公式解決三角形中的幾何度量問題.1.仰角和俯角:與目標視線在同一鉛垂平面內(nèi)的水平視線和目標視線的夾角,目標視線在水平線____方時叫仰角,目標視線在水平線____方時叫俯角.(如圖所示)2.已知△ABC的兩邊
2024-12-04 23:43
【總結(jié)】典例剖析:從位移的合成到向量的加法例1給出下列命題①向量AB的長度與向量BA的長度相等;②向量a與向量b平行,則a與b的方向相同或相反;③兩個有共同起點并且相等的向量,其終點必相同;④兩個有共同終點的向量,一定是共線向量;⑤向量AB與向量CD是共線向量,則點A、B、C、D必在同一條直線上;⑥有
2024-12-05 06:37
【總結(jié)】知識歸納:三角恒等變形一、兩角和與差公式及規(guī)律常見變形sin()sincoscossin.cos()coscossinsin.tantantan().1tantan??????????????????????????
2024-12-05 01:51
【總結(jié)】陜西省咸陽市涇陽縣云陽中學(xué)高中數(shù)學(xué)例導(dǎo)學(xué)案北師大版必修5【學(xué)習(xí)目標】,抽象或構(gòu)造出三角形,標出已知量、未知量,確定解三角形的方法;2.搞清利用正余弦定理可解決的各類應(yīng)用問題的基本圖形和基本等量關(guān)系.【學(xué)習(xí)重點】靈活應(yīng)用正、余弦定理及三角恒等變換解決實際生活中與解三角形有關(guān)的問題。【使用說明】1.規(guī)范
2024-11-19 15:46
【總結(jié)】配角法在三角函數(shù)中的應(yīng)用在三角函數(shù)中,我們經(jīng)常會遇到如下一類型的題:例1已知sin()sin??????????453545135,,求。大部分學(xué)生會如下的解答思路:由兩角的正弦公式有:sin()sincoscossinsincos()sincos
2024-12-05 06:38
【總結(jié)】第二章解三角形課標要求:本章的中心內(nèi)容是如何解三角形,正弦定理和余弦定理是解三角形的工具,最后落實在解三角形的應(yīng)用上。通過本章學(xué)習(xí),學(xué)生應(yīng)當(dāng)達到以下學(xué)習(xí)目標:(1)通過對任意三角形邊長和角度關(guān)系的探索,掌握正弦定理、余弦定理,并能解決一些簡單的三角形度量問題。(2)能夠熟練運用正弦定理、余弦定理等知識和方法解決一些與測量和幾何計算有關(guān)的生活實
2024-11-19 08:01
【總結(jié)】解三角形正弦定理(一)正弦定理:,(2)推論:正余弦定理的邊角互換功能①,,②,,③==④典型例題:1.在△ABC中,已知,則∠B等于()A.B.C.D.2.在△ABC中,已知,則這樣的三角形有_____1____個.3.在△ABC中,若,求的值.解 由條
2025-07-24 11:23
【總結(jié)】余弦定理(一)課時目標;.1.余弦定理三角形任何一邊的________等于其他兩邊________的和減去這兩邊與它們的________的余弦的積的________.即a2=________________,b2=________________,c2=____.2.余弦定理的推論cosA=_______
2024-12-05 06:34
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第2章解三角形2三角形中的幾何計算同步練習(xí)北師大版必修5一、選擇題1.在△ABC中,若abc,且c2a2+b2,則△ABC為()A.直角三角形B.銳角三角形C.鈍角三角形D.不存在[答案]B[解析]∵a&l
2024-12-05 06:36
【總結(jié)】第一篇:高中數(shù)學(xué)§1正弦定理與余弦定理()教案北師大版必修5 §1正弦定理、余弦定理 教學(xué)目的: ⑴使學(xué)生掌握正弦定理教學(xué)重點:正弦定理 教學(xué)難點:正弦定理的正確理解和熟練運用 授課類型:新...
2024-11-06 22:00
【總結(jié)】求函數(shù)值域(最值)的常見方法有哪些?基礎(chǔ)練習(xí)1.的值域是函數(shù)1sin21??xy()???????1,31)(A),1[]31,)((??????B]31,)((???C),1)[(??D基礎(chǔ)練習(xí)2sin
2024-11-18 13:30
【總結(jié)】向量在物理中的應(yīng)用舉例向量起源于物理,是從物理學(xué)中抽象出來的數(shù)學(xué)概念.物理學(xué)中的許多問題,如位移、速度、加速度等都可以利用向量來解決.用數(shù)學(xué)知識解決物理問題,首先要把物理問題轉(zhuǎn)化為數(shù)學(xué)問題,即根據(jù)題目的條件建立數(shù)學(xué)模型,再轉(zhuǎn)化為數(shù)學(xué)中的向量運算來完成.1.解決力學(xué)問題例1質(zhì)量為m的物體靜止地放在斜面上,斜面與水平面的夾角為?,求斜面對于物體
2024-11-19 23:18
【總結(jié)】向量在中學(xué)數(shù)學(xué)中的應(yīng)用由于向量具有幾何形式與代數(shù)形式的“雙重身份”,是中學(xué)數(shù)學(xué)知識的一個交匯點,從而使它成為解決數(shù)學(xué)問題的重要工具.因此,在教學(xué)中除了讓學(xué)生掌握“平面向量”本身的內(nèi)容外,還要重視培養(yǎng)學(xué)生應(yīng)用向量解決其它問題的意識和能力.本文舉例說明向量在中學(xué)數(shù)學(xué)中的應(yīng)用.1在平面幾何中的應(yīng)用例1求證:平面四邊形對角線的平方和
2024-11-19 20:36
【總結(jié)】正余弦定理考點梳理:1.直角三角形中各元素間的關(guān)系:如圖,在△ABC中,C=90°,AB=c,AC=b,BC=a。(1)三邊之間的關(guān)系:a2+b2=c2。(勾股定理)A(2)銳角之間的關(guān)系:A+B=90°;c(3)邊角之間的關(guān)系:(銳角三角函數(shù)定義)bsinA=cosB=
2025-06-26 06:12