【總結(jié)】正弦、余弦函數(shù)的性質(zhì)X(奇偶性、單調(diào)性)正弦、余弦函數(shù)的圖象和性質(zhì)x6?yo-?-12?3?4?5?-2?-3?-4?1?y=sinx(x?R)x6?o-?-12?3?4?5?-2?-3?-4?1?yy=cosx(x?R)
2025-11-21 12:43
2025-11-01 03:00
【總結(jié)】正弦函數(shù)圖象教學(xué)設(shè)計(jì)利津縣第二中學(xué)魏靜一、教材分析:本節(jié)共分兩個(gè)課時(shí),本課為第一課時(shí),主要是利用正弦線畫出,的圖象,考察圖象的特點(diǎn),介紹“五點(diǎn)作圖法”。根據(jù)《普通高中數(shù)學(xué)課程標(biāo)準(zhǔn)(實(shí)驗(yàn))》的要求和教學(xué)內(nèi)容的結(jié)構(gòu)特征,依據(jù)學(xué)生學(xué)習(xí)的心理規(guī)律和素質(zhì)教育的要求,結(jié)合學(xué)生的實(shí)際水平,制定本節(jié)課的教學(xué)目標(biāo)如下:(1)知識(shí)和技能目標(biāo):u理解用正弦線畫正弦函數(shù)的圖象
2025-04-17 04:49
【總結(jié)】(一)用什么方法作出正弦函數(shù)的圖象呢?描點(diǎn)法但描點(diǎn)法的各點(diǎn)的縱坐標(biāo)都是查三角函數(shù)表得到的數(shù)值,不易描出對(duì)應(yīng)點(diǎn)的精確位置,因此作出的圖象不夠準(zhǔn)確.幾何法用單位圓中的正弦線作正弦函數(shù)的圖象.正弦函數(shù)的圖象為了作三角函數(shù)的圖象,三角函數(shù)的自變量要用弧度制來度量,使自變量與函數(shù)值都為
2025-11-03 01:35
【總結(jié)】正弦函數(shù)、余弦函數(shù)的性質(zhì)(2)123456-11123456-11一、知識(shí)點(diǎn)回顧?1、正余弦函數(shù)的定義域?2、正余弦函數(shù)的值域?3、練習(xí)(口答):函數(shù)的值域和最值函數(shù)
2025-07-19 20:47
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象(說課稿)一、說教材二、說教法三、說學(xué)法四、說教學(xué)過程一說教材2.教學(xué)目標(biāo)3.重點(diǎn)、難點(diǎn)③德育目標(biāo):(1)培養(yǎng)學(xué)生勇于探索、勤于思考的精神;(2)培養(yǎng)學(xué)生合作學(xué)習(xí)和數(shù)學(xué)交流的能力;1.教材的地位和作用①知識(shí)目標(biāo):正弦
2025-11-01 22:24
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象復(fù)習(xí)回顧:三角函數(shù)線xyo135o角的正弦線為MP;余弦線為OM;正切線為AT。PA(1,0)TM135o135o的三角函數(shù)線:問題提出:1.任意給定一個(gè)實(shí)數(shù)x,對(duì)應(yīng)的正弦值(sinx)、余弦值(cosx)是否存在?惟一
2025-11-21 14:52
【總結(jié)】第一章三角函數(shù)三角函數(shù)的圖象與性質(zhì)正弦函數(shù)、余弦函數(shù)的圖象1.了解正弦函數(shù)、余弦函數(shù)的圖象.(重點(diǎn)、易混點(diǎn))2.會(huì)用“五點(diǎn)法”畫出正、余弦函數(shù)的圖象.(重點(diǎn))3.能利用正、余弦函數(shù)的圖象解簡單問題.(難點(diǎn))正弦函數(shù)、余弦函數(shù)的圖象函數(shù)y=sinxy=
2025-11-10 17:33
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象諸城一中講解人孫健鵬o1A...........。1-1函數(shù)y=sinx,x?[0,2?)的圖象3?/2??/2o2?xy每一份多少弧度?.π4-3?/2o-?π2-π3-?
2025-11-01 01:03
【總結(jié)】正弦函數(shù)圖像教學(xué)設(shè)計(jì)一、內(nèi)容分析:1、教材的地位與作用《正弦函數(shù)的圖象與性質(zhì)》是人教A必修④,第一章三角函數(shù)第四節(jié)的內(nèi)容,主要包括是正弦函數(shù)的圖象與性質(zhì)。過去學(xué)生已經(jīng)學(xué)習(xí)過一次函數(shù)、二次函數(shù)、指數(shù)函數(shù)和對(duì)數(shù)函數(shù)等,此前還學(xué)過三角函數(shù)線,在此基礎(chǔ)上來學(xué)習(xí)正弦函數(shù)的圖象與性質(zhì),為今后余弦函數(shù)、正切函數(shù)的圖象與性質(zhì)、函數(shù)圖象的研究打好基礎(chǔ)。因此,本節(jié)的學(xué)習(xí)有著極其重要的地位。本
2025-04-17 04:29
【總結(jié)】正、余弦函數(shù)的圖象與性質(zhì)[知識(shí)回顧]2、角的頂點(diǎn)與原點(diǎn)重合,角的始邊與軸的非負(fù)半軸重合,終邊落在第幾象限,則稱為第幾象限角.第一象限角的集合為第二象限角的集合為第三象限角的集合為第四象限角的集合為終邊在軸上的角的集合為終邊在軸上的角的集合為終邊在坐標(biāo)軸上的角的集合為3、與角終邊相同的角的集合為4、已知是第幾象限角,確定所在象限的方法:先把各象限均分
2025-05-16 05:57
【總結(jié)】——正弦、余弦函數(shù)圖象sin(2k+x)=(kZ)??sinxxy??2?3?4?5?60???2?1-1y=sinx(xR)?一、正弦函數(shù)的“五點(diǎn)畫圖法”(0,0)、(,1)、(,0)、(,
2025-11-02 21:09
【總結(jié)】正弦函數(shù)、余弦函數(shù)的圖象和性質(zhì)1.sinα、cosα、tgα的幾何意義.oxy11PMAT正弦線MP余弦線OM正切線AT想一想?三角問題幾何問題正弦函數(shù).余弦函數(shù)的圖象和性質(zhì)兩倍角的正弦、余弦、正切正弦函數(shù).余弦函數(shù)的圖象和性質(zhì)能否利用正弦線作出正弦
2025-07-23 07:51
【總結(jié)】正弦函數(shù)圖象的對(duì)稱性北京市第十九中學(xué)檀晉軒 【教學(xué)目標(biāo)】1.使學(xué)生掌握正弦函數(shù)圖象的對(duì)稱性及其代數(shù)表示形式,理解誘導(dǎo)公式(R)與(R)的幾何意義,體會(huì)正弦函數(shù)的對(duì)稱性.2.在探究過程中滲透由具體到抽象,由特殊到一般以及數(shù)形結(jié)合的思想方法,提高學(xué)生觀察、分析、抽象概括的能力.3.通過具體的探究活動(dòng),培養(yǎng)學(xué)生主動(dòng)利用信息技術(shù)研究并解決數(shù)學(xué)問題的能力,增強(qiáng)學(xué)生之間合作與交流的
【總結(jié)】§1.4三角函數(shù)的圖像與性質(zhì)§正弦函數(shù)、余弦函數(shù)的圖象【學(xué)習(xí)目標(biāo)、細(xì)解考綱】學(xué)會(huì)“五點(diǎn)法”與“幾何法”畫正弦函數(shù)圖象,會(huì)用“五點(diǎn)法”畫余弦函數(shù)圖象.【知識(shí)梳理、雙基再現(xiàn)】1.“五點(diǎn)法”作正弦函數(shù)圖象的五個(gè)點(diǎn)是______、______、______、______、______.2.“五點(diǎn)法”作余弦函
2025-11-21 13:51