【總結(jié)】【學(xué)案導(dǎo)學(xué)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)函數(shù)模型及其應(yīng)用課時作業(yè)蘇教版必修1課時目標(biāo).、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)模型解決實際問題.生活中的簡單問題,培養(yǎng)對數(shù)學(xué)模型的應(yīng)用意識.1.幾種常見的函數(shù)模型(1)一次函數(shù):y=kx+b(k≠0)(2)二次函數(shù):y=ax2+bx+c(a≠
2025-11-18 23:27
【總結(jié)】函數(shù)的單調(diào)性(二)課時目標(biāo)(小)值的概念及其幾何意義.(小)值與單調(diào)性之間的關(guān)系.(小)值.1.函數(shù)的最值設(shè)y=f(x)的定義域為A.(1)最大值:如果存在x0∈A,使得對于任意的x∈A,都有__________,那么稱f(x0)為y=f(x)的最大值,記為______=f(x0)
2025-11-19 01:09
【總結(jié)】函數(shù)模型及其應(yīng)用課時目標(biāo).、二次函數(shù)、指數(shù)函數(shù)、對數(shù)函數(shù)、冪函數(shù)模型解決實際問題.生活中的簡單問題,培養(yǎng)對數(shù)學(xué)模型的應(yīng)用意識.1.幾種常見的函數(shù)模型(1)一次函數(shù):y=kx+b(k≠0)(2)二次函數(shù):y=ax2+bx+c(a≠0)(3)指數(shù)函數(shù):y=ax(a0且a≠1)(4)對
2025-11-19 01:51
【總結(jié)】函數(shù)的奇偶性課時目標(biāo),了解函數(shù)奇偶性的含義;;.1.函數(shù)奇偶性的概念一般地,設(shè)函數(shù)y=f(x)的定義域為A.(1)如果對于任意的x∈A,都有__________,那么稱函數(shù)y=f(x)是偶函數(shù);(2)如果對于任意的x∈A,都有__________,那么稱函數(shù)y=f(x)是奇函數(shù).2.奇、偶函
【總結(jié)】習(xí)題課課時目標(biāo).能力.1.若函數(shù)y=(2k+1)x+b在R上是減函數(shù),則k的取值范圍為________.2.定義在R上的函數(shù)f(x)對任意兩個不相等的實數(shù)a,b,總有fa-fba-b0成立,則必有________.(填序號)①函數(shù)f(x)先增后減;②函數(shù)f(x)
【總結(jié)】【學(xué)案導(dǎo)學(xué)設(shè)計】2021-2021學(xué)年高中數(shù)學(xué)習(xí)題課課時作業(yè)蘇教版必修1課時目標(biāo),加深對映射概念的了解.,會根據(jù)不同的需要選擇恰當(dāng)?shù)姆椒?如圖象法、列表法、解析法)表示函數(shù).,理解簡單的分段函數(shù),并能簡單應(yīng)用.1.下列圖形中,可能作為函數(shù)y=f(x)圖象的是______.(填序號)2.已知函數(shù)f
【總結(jié)】第三章第1課時對數(shù)的概念及常用對數(shù)一、選擇題1.使對數(shù)loga(-2a+1)有意義的a的取值范圍為()A.0<a<12且a≠1B.0<a<12C.a(chǎn)>0且a≠1D.a(chǎn)<12[答案]B[解析]由對數(shù)的性質(zhì),得?????-2a+1>0a>0a≠1
2025-11-18 23:59
【總結(jié)】對數(shù)與對數(shù)運算班級:__________姓名:__________設(shè)計人__________日期__________課后練習(xí)【基礎(chǔ)過關(guān)】1.若,,,,則正確的是A.B.C.D.2.函數(shù)的定義域為A.B.C.D.3.已知,,則的值為A.B.C.D.4
2025-11-19 00:22
【總結(jié)】第2課時對數(shù)函數(shù)的圖象與性質(zhì)通過對數(shù)函數(shù)的圖象及其變換,觀察發(fā)現(xiàn)對數(shù)函數(shù)的性質(zhì),提高識圖能力.對數(shù)函數(shù)y=logax(a>1)與指數(shù)函數(shù)y=ax(a>1)的性質(zhì)比較函數(shù)y=axy=logax圖象性質(zhì)定義域R定義域(0,+∞)值域(0,+∞)值域R過
2025-11-19 18:28
【總結(jié)】第2課時用二分法求方程的近似解課時目標(biāo).,借助于學(xué)習(xí)工具,用二分法求出方程的近似解.,體會“逐步逼近”的思想.1.二分法的概念對于在區(qū)間[a,b]上連續(xù)不斷且f(a)·f(b)0的函數(shù)y=f(x),通過不斷地把函數(shù)f(x)的零點所在的區(qū)間一分為二,使區(qū)間的兩個端點逐步逼近零點,進而
【總結(jié)】對數(shù)(1)教學(xué)目標(biāo):1.理解對數(shù)的概念;2.能夠進行對數(shù)式與指數(shù)式的互化;3.會根據(jù)對數(shù)的概念求一些特殊的對數(shù)式的值.教學(xué)重點:對數(shù)的概念,對數(shù)式與指數(shù)式的相互轉(zhuǎn)化,并求一些特殊的對數(shù)式的值;教學(xué)難點:對數(shù)概念的引入與理解.教學(xué)過程:一、情境創(chuàng)設(shè)假設(shè)2021年我國的國民生產(chǎn)總值
2025-11-19 18:29
2025-11-19 15:49
【總結(jié)】第三章第2課時積、商、冪的對數(shù)一、選擇題1.lg8+3lg5=()A.lg16B.3lg7C.6D.3[答案]D[解析]lg8+3lg5=3lg2+3lg5=3lg10=3.2.(2021~2021學(xué)年度遼寧沈陽二中高一上學(xué)期期中測試)已知x、y為正實
2025-11-19 00:26
【總結(jié)】中小學(xué)課件站高中數(shù)學(xué)必修1中小學(xué)課件站情境問題:設(shè)x年可實現(xiàn)翻一番的目標(biāo),則有假設(shè)2021年我國的國民生產(chǎn)總值為a億元,如每年平均增長8%,那么經(jīng)過多少年,國民生產(chǎn)總值可翻一番?a(1+)x=2a,即=2.在指數(shù)式中,已知底數(shù)和指數(shù),通過乘方運算可求冪;而已知指數(shù)和冪,則可通
2025-11-19 00:42