【總結(jié)】最大值、最小值問題學(xué)習(xí)目標(biāo):理解并掌握函數(shù)最大值與最小值的意義及其求法.弄請(qǐng)函數(shù)極值與最值的區(qū)別與聯(lián)系.養(yǎng)成“整體思維”的習(xí)慣,提高應(yīng)用知識(shí)解決實(shí)際問題的能力.學(xué)習(xí)重點(diǎn):求函數(shù)的最值及求實(shí)際問題的最值.學(xué)習(xí)難點(diǎn):求實(shí)際問題的最值.掌握求最值的方法關(guān)鍵是嚴(yán)格套用求最值的步驟,突破難點(diǎn)要把實(shí)際問題“數(shù)學(xué)化”,即建立數(shù)學(xué)模型.學(xué)
2024-12-05 06:35
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第2課時(shí)曲線上一點(diǎn)處的切線教學(xué)目標(biāo):;、求法及切線方程的求法;“局部以直代曲”和“用割線的逼近切線”的思想方法.教學(xué)重點(diǎn):理解曲線在一點(diǎn)處的切線的定義,以及曲線在一點(diǎn)處的切線的斜率的定義,掌握曲線在一點(diǎn)處切線斜率及切線方程的求法教學(xué)難點(diǎn):理解曲線在一點(diǎn)處的
2024-11-19 17:30
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》復(fù)習(xí)2導(dǎo)學(xué)案蘇教版選修1-1復(fù)習(xí)要求:單調(diào)性與導(dǎo)數(shù)的關(guān)系;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性;會(huì)求函數(shù)的單調(diào)區(qū)間.;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值;會(huì)求閉區(qū)間上函數(shù)的最大值、最小值.課前預(yù)習(xí):1.知識(shí)要點(diǎn)回顧:(1)函數(shù)的導(dǎo)數(shù)與單調(diào)性的關(guān)系:(2)函
2024-12-04 23:46
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):;2.能通過運(yùn)算法則求出導(dǎo)數(shù)并解決相應(yīng)問題。教學(xué)重點(diǎn):.靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則。教學(xué)難點(diǎn):準(zhǔn)確快速的對(duì)函數(shù)求導(dǎo)。課前預(yù)習(xí):問題1:基本初等函數(shù)的導(dǎo)數(shù)公式表:①若
2024-12-05 06:45
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》瞬時(shí)變化率導(dǎo)數(shù)(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.理解并掌握曲線在某一點(diǎn)處的切線的概念;2.理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;3.理解切線概念的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問題的能力和培養(yǎng)學(xué)生轉(zhuǎn)化問題的能力及數(shù)形結(jié)合思想.
2024-12-05 06:44
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在函數(shù)中的應(yīng)用單調(diào)性(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):會(huì)利用導(dǎo)數(shù)判斷函數(shù)的單調(diào)性并求函數(shù)的單調(diào)區(qū)間.利用函數(shù)的單調(diào)性解決含參問題。教學(xué)重點(diǎn):函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系教學(xué)難點(diǎn):探索函數(shù)的單調(diào)性與導(dǎo)數(shù)的關(guān)系預(yù)習(xí)檢測:課堂探究:
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》瞬時(shí)變化率導(dǎo)數(shù)(3)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):通過大量實(shí)例的分析,經(jīng)歷由平均變化率過渡到瞬時(shí)變化率的過程,了解導(dǎo)數(shù)概念的實(shí)際背景,體會(huì)導(dǎo)數(shù)的思想及其內(nèi)涵;2.會(huì)求簡單函數(shù)的導(dǎo)數(shù),通過函數(shù)圖象直觀地了解導(dǎo)數(shù)的幾何意義;3.體會(huì)建立數(shù)學(xué)模型刻畫客觀世界的“數(shù)學(xué)化
【總結(jié)】上頁下頁返回第1頁第二、三節(jié)函數(shù)的單調(diào)性與極值、最大值與最小值一、函數(shù)單調(diào)性的判別法二、函數(shù)的極值及其求法三、函數(shù)的最大值和最小值第三章導(dǎo)數(shù)的應(yīng)用目錄后退主頁退出本節(jié)知識(shí)引入本節(jié)目的與要求本節(jié)重點(diǎn)
2025-08-01 17:50
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用,第一頁,編輯于星期六:點(diǎn)三十七分。,3.3導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用3.3.3函數(shù)的最大(小)值與導(dǎo)數(shù),第二頁,編輯于星期六:點(diǎn)三十七分。,,梳理知識(shí)夯實(shí)基礎(chǔ),自主學(xué)習(xí)導(dǎo)航,第三頁,編...
2025-10-13 19:02
【總結(jié)】§函數(shù)的最大值與最小值高三數(shù)學(xué)選修(Ⅱ)第三章導(dǎo)數(shù)與微分MaximumValue&MinimumValueofFunction實(shí)際問題如圖,有一長80cm寬60cm的矩形不銹鋼薄板,用此薄板折成一個(gè)長方體無蓋容器,要分別過矩形四個(gè)頂點(diǎn)處各挖去一個(gè)全等的小正方形,按加工要求,長方體的高不小
2024-11-10 00:27
【總結(jié)】一、填空題(每題4分,共24分)1.(2020·吉林高二檢測)若函數(shù)f(x)=-x3+3x2+9x+a在區(qū)間[-2,-1]上的最大值為2,則它在該區(qū)間上的最小值為____.【解析】f′
2024-11-12 18:11
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》平均變化率導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):通過對(duì)一些實(shí)例的直觀感知,構(gòu)建平均變化率的概念,并初步運(yùn)用和加深理解利用平均變化率來刻畫變量變化得快與慢的原理;通過從實(shí)際生活背景中構(gòu)建數(shù)學(xué)模型來引入平均變化率,領(lǐng)會(huì)以直代曲和數(shù)形結(jié)合的思想,培養(yǎng)學(xué)生的抽象思維與歸納綜合的能力,提升學(xué)生的數(shù)
【總結(jié)】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.理解兩個(gè)函數(shù)的積的導(dǎo)數(shù)法則、和(或差)的導(dǎo)數(shù)法則,學(xué)會(huì)用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù)教學(xué)重點(diǎn):靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點(diǎn):函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用.
【總結(jié)】最大值、最小值問題(二)雙基達(dá)標(biāo)?限時(shí)20分鐘?1.將長度是8的均勻直鋼條截成兩段,使其立方和最小,則分法為().A.2與6B.4與4C.3與5D.以上均錯(cuò)解析設(shè)一段長為x,則另一段為8-x,其中0x8.設(shè)y=x3+(8-x)3,則y′=3x2-
2024-12-03 00:13
【總結(jié)】(1)基本不等式(2)基本不等式的最大值與最小值對(duì)于任意實(shí)數(shù)x,y,(x-y)2≥0總是成立的,即x2-2xy+y2≥0所以,當(dāng)且僅當(dāng)x=y時(shí)等號(hào)成立22x+y≥xy2如果a,b都是正數(shù),那么,當(dāng)且僅當(dāng)a=b時(shí),等號(hào)成立.a+b≥ab2,,
2025-07-25 16:08