【總結(jié)】課題:兩角和與差的余弦班級:姓名:學(xué)號:第學(xué)習(xí)小組【學(xué)習(xí)目標(biāo)】,體會向量與三角函數(shù)之間的關(guān)系;、求值、證明【課前預(yù)習(xí)】1.已知向量),(=),(=221,1yxbyxa,夾角為?,則?ba??==2.
2024-11-20 01:05
【總結(jié)】《兩角差的余弦公式》教學(xué)設(shè)計 () 一、教學(xué)分析 本節(jié)內(nèi)容是三角函數(shù)線和誘導(dǎo)公式等知識的延伸,是兩角和與差的正弦、余弦、正切,以及二倍角公式等知識的基礎(chǔ)。對三角變換、三角恒等式的證明和三角函...
2025-04-03 03:35
【總結(jié)】數(shù)學(xué):“兩角差的余弦公式”教學(xué)設(shè)計一、教學(xué)內(nèi)容解析三角恒等變換處于三角函數(shù)與數(shù)學(xué)變換的結(jié)合點和交匯點上,是前面所學(xué)三角函數(shù)知識的繼續(xù)與發(fā)展,是培養(yǎng)學(xué)生推理能力和運(yùn)算能力的重要素材.兩角差的余弦公式是《三角恒等變換》這一章的基礎(chǔ)和出發(fā)點,公式的發(fā)現(xiàn)和證明是本節(jié)課的重點,也是難點.由于和與差內(nèi)在的聯(lián)系性與統(tǒng)一性,我們可以
2024-11-18 21:26
【總結(jié)】第三章一、選擇題1.若tan(π4-α)=3,則cotα等于()A.-2B.-12C.12D.2[答案]A[解析]∵tan(π4-α)=1-tanα1+tanα=3,∴tanα=-12,∴cotα=-2.2.設(shè)tanα、tanβ是方程x2-3x+2
2024-11-28 02:11
【總結(jié)】第3章三角恒等變換兩角和與差的三角函數(shù)兩角和與差的余弦一、填空題1.cos15°的值是________.2.若cos(α-β)=13,則(sinα+sinβ)2+(cosα+cosβ)2=________.3.已知α、β均為銳角,且sinα=55,cosβ
2024-12-05 10:15
【總結(jié)】兩角和與差的余弦公式教學(xué)設(shè)計【教學(xué)三維目標(biāo)】:理解兩角和與差的余弦公式的推導(dǎo)過程,熟記兩角和與差的余弦公式,運(yùn)用兩角和與差的余弦公式,解決相關(guān)數(shù)學(xué)問題;培養(yǎng)學(xué)生嚴(yán)密而準(zhǔn)確的數(shù)學(xué)表達(dá)能力;培養(yǎng)學(xué)生逆向思維和發(fā)散思維能力;2過程與方法目標(biāo):通過對公式的推導(dǎo)提高學(xué)生研究問題、分析問題、解決問題能力
2024-11-19 11:24
【總結(jié)】教學(xué)設(shè)計:一:學(xué)習(xí)目標(biāo):二:復(fù)習(xí)引入:(1)向量的數(shù)量積(定義)__________ba??),,a11yx(?),b22yx(?則(坐標(biāo)表達(dá)式)__________ba??(2)觀察圖(一)單位圓上的點的坐標(biāo)表示p1()p2(
2024-11-28 00:26
【總結(jié)】學(xué)習(xí)目標(biāo)1、理解以兩角差的余弦公式為基礎(chǔ),推導(dǎo)兩角和、差正弦的方法。2、體會三角恒等變換特點的過程,理解推導(dǎo)過程,掌握公式的應(yīng)用。學(xué)習(xí)過程1、兩角和的余弦公式:2、兩角差的余弦公式:
2024-11-27 23:36
【總結(jié)】第一頁,編輯于星期六:點三十六分。,3.1兩角和與差的正弦、余弦和正切公式兩角差的余弦公式,第二頁,編輯于星期六:點三十六分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁,編輯于星期六:點三十六分。,第...
2024-10-22 18:58
【總結(jié)】誘導(dǎo)公式(一)一、學(xué)習(xí)目標(biāo)1.通過本節(jié)內(nèi)容的教學(xué),使學(xué)生掌握?+?k2,-?角的正弦、余弦和正切的誘導(dǎo)公式及其探求思路,并能正確地運(yùn)用這些公式進(jìn)行任意角的正弦、余弦和正切值的求解、簡單三角函數(shù)式的化簡與三角恒等式的證明;2.通過公式的應(yīng)用,培養(yǎng)學(xué)生的化歸思想,以及信息加工能力、運(yùn)算推理能力、分析問題和解決問題的能力;二、教學(xué)重點、
2024-11-18 16:46
【總結(jié)】第3章三角恒等變換3.1兩角和與差的三角函數(shù)3.兩角和與差的余弦思考:cos(α-β)=?有人認(rèn)為cos(α-β)=cosα-cosβ,對不對?令α=π3,β=-π6,則cos(α-β)=cosπ2=0,cosα-cosβ=cosπ3-
【總結(jié)】誘導(dǎo)公式(三)一、學(xué)習(xí)目標(biāo)1.通過本節(jié)內(nèi)容的教學(xué),使學(xué)生進(jìn)一步理解和掌握四組正弦、余弦和正切的誘導(dǎo)公式,并能正確地運(yùn)用這些公式進(jìn)行任意角的正弦、余弦和正切值的求解、簡單三角函數(shù)式的化簡與三角恒等式的證明;2.通過公式的應(yīng)用,培養(yǎng)學(xué)生的化歸思想,運(yùn)算推理能力、分析問題和解決問題的能力;二、教學(xué)重點、難點重點:四組誘導(dǎo)公式及這四組誘導(dǎo)公式
2024-11-28 01:12
【總結(jié)】 兩角差的余弦公式 考試標(biāo)準(zhǔn) 課標(biāo)要點 學(xué)考要求 高考要求 兩角差的余弦公式 b b 兩角差的正弦公式及兩角和的正弦、余弦公式 c c 兩角和與差的正切公式 ...
2025-04-03 04:26
【總結(jié)】不查表,求cos(–375°)的值.解:cos(–375°)=cos375°=cos(360°+15°)=cos15°1.15°能否寫成兩個特殊角的和或差的形式?2.
2024-11-09 23:32
【總結(jié)】兩角差的余弦公式教學(xué)目的:經(jīng)歷用向量數(shù)量積推導(dǎo)出兩角差的余弦公式的過程,進(jìn)一步體會向量方法的作用;掌握兩角差的余弦公式的結(jié)構(gòu)特征,并會應(yīng)用。教學(xué)重點:兩角差的余弦公式結(jié)構(gòu)及其應(yīng)用教學(xué)難點:兩角差的余弦公式的推導(dǎo)。教學(xué)過程一、新課引入課本P136的問題二、新課[1、問題的提出co
2024-12-08 22:40