【總結(jié)】正弦定理作業(yè)1、在A(yíng)BC?中,若Abasin23?,則B等于()A.?30B.?60C.?30或?150D.?60或?120[2、在A(yíng)BC?中,已知?45,1,2???Bcb,則a等于()A.226?B.
2025-11-21 14:39
【總結(jié)】【成才之路】2021年春高中數(shù)學(xué)第2章解三角形1正弦定理與余弦定理第2課時(shí)余弦定理同步練習(xí)北師大版必修5一、選擇題1.(2021·煙臺(tái)高二檢測(cè))在△ABC中,角A,B,C所對(duì)的邊分別為a,b,c,且a2=b2-c2+2ac,則角B的大小是()A.45°
2025-11-26 06:40
【總結(jié)】12直角三角形中的邊角關(guān)系:CBAabc1、角的關(guān)系:A+B+C=180°A+B=C=90°2、邊的關(guān)系:a2+b2=c23、邊角關(guān)系:sinA=—=cosBsinB=—=cosAacbc復(fù)習(xí)3CBAabc
2025-05-07 12:06
【總結(jié)】正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理正弦定理、余弦定理回憶一下直角三角形的邊角關(guān)系?ABCcba222cba??Acasin?Bcbsin?Abatan????90BA兩等式間有聯(lián)系嗎?cBbAa??si
2025-11-08 06:14
【總結(jié)】數(shù)列、數(shù)列的通項(xiàng)公式一、從實(shí)例引入1.堆放的鋼管4,5,6,7,8,9,105、無(wú)窮多個(gè)數(shù)排成一列數(shù):1,1,1,1,…2、正整數(shù)的倒數(shù)4、?1的正整數(shù)次冪:?1,1,?1,1,…4,5,6,7,8,9,10?1,
2025-11-08 05:41
【總結(jié)】第一篇:高中數(shù)學(xué)《余弦定理》教案2蘇教版必修5 第2課時(shí)余弦定理 【學(xué)習(xí)導(dǎo)航】 知識(shí)網(wǎng)絡(luò) 余弦定理ì航運(yùn)問(wèn)題中的應(yīng)用 í ?判斷三角形的形狀 學(xué)習(xí)要求 1.能把一些簡(jiǎn)單的實(shí)際問(wèn)題轉(zhuǎn)化為...
2025-10-19 16:14
【總結(jié)】1.3正弦定理、余弦定理的應(yīng)用學(xué)習(xí)目標(biāo)預(yù)習(xí)導(dǎo)學(xué)典例精析欄目鏈接情景導(dǎo)入2020年10月12日,中國(guó)宣布了自己的探月計(jì)劃:中國(guó)將在2020年把“嫦娥一號(hào)”繞月衛(wèi)星送入太空,2020年實(shí)現(xiàn)發(fā)射軟著陸器登陸月球.路透社報(bào)道:中國(guó)將在2024年把人送上月球.
2025-11-09 08:11
【總結(jié)】正弦定理、余弦定理的應(yīng)用(2)例1、自動(dòng)卸貨汽車(chē)的車(chē)箱采用液壓機(jī)構(gòu)。設(shè)計(jì)時(shí)需要計(jì)算油泵頂杠BC的長(zhǎng)度(如圖所示)。已知車(chē)箱的最大仰角為,油泵頂點(diǎn)B與車(chē)箱支點(diǎn)A之間的距離為,AB與水平線(xiàn)之間的夾角為,AC長(zhǎng)為,計(jì)算BC的長(zhǎng)(保留三個(gè)有效數(shù)字)。?60'206?
2025-07-19 20:47
【總結(jié)】第一篇:數(shù)學(xué):正弦定理、余弦定理的應(yīng)用教案(蘇教版必修5) 您身邊的志愿填報(bào)指導(dǎo)專(zhuān)家 第5課時(shí):§正弦定理、余弦定理的應(yīng)用(1) 【三維目標(biāo)】: 一、知識(shí)與技能 ,并能應(yīng)用正弦定理、余弦...
2025-09-27 05:35
【總結(jié)】§.余弦定理(1)一、問(wèn)題提出?在三角形中,已知兩角及一邊,或已知兩邊及其中一邊的對(duì)角,可以利用正弦定理求其他的邊和角,那么,已知兩邊及其夾角,怎么求出此角的對(duì)邊呢?已知三邊,又怎么求出它的三個(gè)角呢?二、分析理解22222cos2cos2))((cAbcbABAABA
2025-11-08 23:32
【總結(jié)】§.余弦定理(2)知識(shí)改變命運(yùn),勤奮成就未來(lái).三角形任何一邊的平方等于其他兩邊平方的和減去這兩邊與它們夾角的余弦的積的兩倍。Abccbacos2222???Baccabcos2222???Cabbaccos2222???余弦定理22222
2025-11-09 08:48
【總結(jié)】余弦定理復(fù)習(xí)回顧RCcBbAa2sinsinsin???baCAB(1)已知三角形的兩角和任一邊,求其它兩邊和另一角;(2)已知三角形的兩邊和其中一邊的對(duì)角,求另一邊的對(duì)角(從而進(jìn)一步求出其它的邊和角).第二種情況若知道的是大邊的對(duì)角,只有唯一的一組解;若給出的是小邊的對(duì)角,則結(jié)
【總結(jié)】本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理1解三角形應(yīng)用舉例本資料由書(shū)利華教育網(wǎng)(又名數(shù)理化網(wǎng))為您整理2基礎(chǔ)知識(shí)復(fù)習(xí)1、正弦定理2、余弦定理sinsinsinabcABC??=2R(R為△ABC外接圓半徑)CabbacBcaacbAbccbacos2cos
2025-12-28 16:31
【總結(jié)】BCA創(chuàng)設(shè)情境BABCAC??.||,||ACbBCaBA,求夾角是,如果???數(shù)學(xué)理論CabbacBacacbAbccbacos2cos2cos2222222222?????????數(shù)學(xué)理論.2cos,2cos,2cos22222