【總結(jié)】《微積分基本定理》導(dǎo)學(xué)案學(xué)習(xí)目標(biāo):,直觀了解微積分基本定理的含義,會(huì)用牛頓-萊布尼茲公式求簡單的定積分,體會(huì)事物間的相互轉(zhuǎn)化、對(duì)立統(tǒng)一的辯證關(guān)系,培養(yǎng)學(xué)生辯證唯物主義觀點(diǎn),提高理性思維能力[中%國教*&育^出版@網(wǎng)]學(xué)習(xí)重點(diǎn)難點(diǎn):通過探究變速直線運(yùn)動(dòng)物體的速度與位移的關(guān)系,使學(xué)生直觀了解微積分基本定理的含義,
2024-12-07 21:44
【總結(jié)】1.(2011·寧夏銀川一中月考)求曲線y=x2與y=x所圍成圖形的面積,其中正確的是( )A.S=(x2-x)dx B.S=(x-x2)dxC.S=(y2-y)dy D.S=(y-)dy[答案] B[分析] 根據(jù)定積分的幾何意義,確定積分上、下限和被積函數(shù).[解析] 兩函數(shù)圖象的交點(diǎn)坐標(biāo)是(0,0),(1,1),故積分上限是1,下限是0,
2025-06-24 18:39
【總結(jié)】§微積分基本定理學(xué)習(xí)目標(biāo)思維脈絡(luò)1.通過實(shí)例能直觀了解微積分基本定理.2.能利用微積分基本定理求基本函數(shù)的定積分.3.了解導(dǎo)數(shù)與定積分的關(guān)系.4.能在具體的應(yīng)用中體會(huì)微積分基本定理的作用和意義.微積分基本定理微積分基本定理:如果連續(xù)函數(shù)f(x)
2024-11-18 13:32
【總結(jié)】1微積分基本公式問題的提出積分上限函數(shù)及其導(dǎo)數(shù)牛頓—萊布尼茨公式小結(jié)思考題作業(yè)(v(t)和s(t)的關(guān)系)★☆☆fundamentalformulaofcalculus第4章定積分與不定積分2通過定積分的物理意義,例變速直線運(yùn)動(dòng)中路
2025-02-21 10:32
【總結(jié)】主要內(nèi)容典型例題第五章不定積分習(xí)題課積分法原函數(shù)選擇u有效方法基本積分表第一換元法第二換元法直接積分法分部積分法不定積分幾種特殊類型函數(shù)的積分一、主要內(nèi)
2025-08-11 11:12
【總結(jié)】│對(duì)數(shù)與對(duì)數(shù)函數(shù)│知識(shí)梳理知識(shí)梳理│知識(shí)梳理│知識(shí)梳理│知識(shí)梳理│要點(diǎn)探究要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究│要點(diǎn)探究
2025-01-08 14:08
2025-01-08 13:44
【總結(jié)】主要內(nèi)容典型例題第四章中值定理與導(dǎo)數(shù)的應(yīng)用習(xí)題課洛必達(dá)法則Rolle定理Lagrange中值定理常用的泰勒公式型00,1,0??型???型??0型00型??Cauchy中值定理Taylor中值定理xxF?)()()(bfaf?0?n
2025-08-21 12:46
【總結(jié)】微積分基本定理變速直線運(yùn)動(dòng)中位移函數(shù)與速度函數(shù)的聯(lián)系一方面,變速直線運(yùn)動(dòng)中位移為?21)(TTdttv設(shè)某物體作直線運(yùn)動(dòng),已知速度)(tvv?是時(shí)間間隔],[21TT上t的一個(gè)連續(xù)函數(shù),求物體在這段時(shí)間內(nèi)所經(jīng)過的位移.另一方面,這段位移可表示為)()(12TsTs?
2025-07-25 15:39
【總結(jié)】主要內(nèi)容典型例題第六章定積分及其應(yīng)用習(xí)題課(一)問題1:曲邊梯形的面積問題2:變速直線運(yùn)動(dòng)的路程存在定理廣義積分定積分定積分的性質(zhì)定積分的計(jì)算法牛頓-萊布尼茨公式()d()()bafxxFbFa??
2025-08-21 12:42
【總結(jié)】abxyo??A曲邊梯形由連續(xù)曲線實(shí)例1(求曲邊梯形的面積))(xfy?)0)((?xf、x軸與兩條直線ax?、bx?所圍成.第五節(jié)定積分一、問題的提出)(xfy?abxyoabxyo用矩形面積近似取代曲邊梯形面積顯然,小矩形越多,矩形總面
2025-07-22 11:11
【總結(jié)】定義1設(shè)函數(shù))(xf在區(qū)間),[??a上連續(xù),且)()(xfxF??,如果極限????babdxxf)(lim存在,則稱此極限為函數(shù))(xf在無窮區(qū)間),[??a上的反常積分,記作???adxxf)(.???adxxf)(?????babdxxf)(lim當(dāng)極限存在
2025-07-22 11:10
【總結(jié)】11.定積分的概念:特殊和式的極限.()bafxdx??01lim()niiifx??????2.定積分存在的必要條件和充分條件()[,]()[,]fxabfxab若在上必要條可積,則件在上有界.若函數(shù))(xf
2025-01-19 11:22
【總結(jié)】()dbafxx??定積分定義定積分的幾何意義:0lim??各部分面積的代數(shù)和可積的兩個(gè)充分條件:1.2.且只有有限個(gè)間斷點(diǎn)定積分的性質(zhì)(7條)§內(nèi)容回顧ix?()if?1ni??(大前提:函數(shù)有界)定積分的性質(zhì)(設(shè)所列定積分都存在)0d)(??aa
2025-01-20 05:32
【總結(jié)】高等數(shù)學(xué)(一)微積分一元函數(shù)微分學(xué)(第三章、第四章)一元函數(shù)積分學(xué)(第五章)第一章函數(shù)及其圖形第二章極限和連續(xù)多元函數(shù)微積分(第六章)高數(shù)一串講教材所講主要內(nèi)容如下:串講內(nèi)容第一部分函數(shù)極限與連續(xù)
2025-07-24 00:44