【總結(jié)】 平行四邊形的判定第1課時 平行四邊形的判定知識點1知識點2知識點3根據(jù)對邊關(guān)系判定平行四邊形圖,在四邊形ABCD中,AB∥CD,AB=CD,E為AB上一點,過點E作EF∥BC,交CD于點F,G為AD上一點,H為BC上一點,連接CG,GD=BH,則圖中的平行四邊形有(??D
2025-06-16 12:28
【總結(jié)】第十八章 平行四邊形 平行四邊形 平行四邊形的性質(zhì)邊形:兩組對邊分別 的四邊形是平行四邊形.平行四邊形用 表示.?邊形的性質(zhì)(1)邊的性質(zhì):對邊 且 ;?(2)角的性質(zhì):對角 ,鄰角 ;?(3)對角線的性質(zhì):對角線
2025-06-12 15:25
【總結(jié)】 平行四邊形的判定邊形的判定定理(1)兩組對邊分別 的四邊形是平行四邊形.(2)對角線 的四邊形是平行四邊形.?(3)兩組對角分別 的四邊形是平行四邊形.?(4)一組對邊 的四邊形是平行四邊形.?相等互相平分
2025-06-17 21:38
【總結(jié)】平行四邊形判定第十八章平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)練優(yōu)八年級數(shù)學(xué)下(RJ)教學(xué)課件第1課時平行四邊形的判定(1)學(xué)習(xí)目標(biāo),體會類比思想及探究圖形判定的一般思路;(重點),能根據(jù)不同條件靈活選取適當(dāng)?shù)呐卸ǘɡ磉M行推理論證.(難點)
2025-06-21 12:28
【總結(jié)】平行四邊形判定第十八章平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)練優(yōu)八年級數(shù)學(xué)下(RJ)教學(xué)課件第2課時平行四邊形的判定(2)學(xué)習(xí)目標(biāo)“一組對邊平行且相等的四邊形是平行四邊形”的判定方法.(重點)平行四邊形的性質(zhì)與判定的綜合運用.(難點)數(shù)
【總結(jié)】平行四邊形平行四邊形的性質(zhì)第1課時平行四邊形邊、角的性質(zhì)(1)定義:兩組對邊分別的四邊形叫做平行四邊形.平行(2)表示方法:如圖,平行四邊形ABCD記作“?ABCD”,讀作“平行四邊形ABCD”.(1)平行四邊形的對邊.(2)平行四邊形的對
2025-06-16 12:10
【總結(jié)】平行四邊形的性質(zhì)第十八章平行四邊形導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)學(xué)練優(yōu)八年級數(shù)學(xué)下(RJ)教學(xué)課件第1課時平行四邊形的邊、角特征學(xué)習(xí)目標(biāo)掌握平行四邊形的定義和對邊相等、對角相等的兩條性質(zhì).(重點).(難點)“實驗—猜想—驗證—證明”的過程
2025-06-13 14:26
【總結(jié)】 菱形學(xué)前溫故新課早知邊形相比,矩形具有的特殊性質(zhì):(1)矩形的四個角都是 ;(2)矩形的對角線 .?:(1)有一個角是直角的 是矩形;(2)對角線 的平行四邊形是矩形.?直角相等平行四邊形相等學(xué)前溫故新課早知有一組鄰邊
2025-06-12 00:10
【總結(jié)】 特殊的平行四邊形 矩形學(xué)前溫故新課早知邊形的性質(zhì):平行四邊形的兩組對邊分別 ,且 ;兩組對角分別 ;對角線 .?邊形的判定:(1)兩組對邊分別 的四邊形是平行四邊形;?(2)兩組對邊分別 的四邊形是平行四邊形;?
2025-06-13 12:20
2025-06-13 12:19
2025-06-12 12:04
【總結(jié)】第十八章平行四邊形第2課時平行四邊形的性質(zhì)3學(xué)習(xí)指南知識管理歸類探究分層作業(yè)當(dāng)堂測評學(xué)習(xí)指南★本節(jié)學(xué)習(xí)主要解決以下問題★1.平行四邊形的性質(zhì)3此內(nèi)容為本節(jié)的重點.為此設(shè)計了【歸類探究】中的例1
2025-06-14 14:19
【總結(jié)】第2課時平行四邊形對角線的性質(zhì)平行四邊形的對角線.互相平分知識點:平行四邊形的對角線互相平分【思路點撥】求線段相等,可以通過證含有所求證線段的兩個三角形全等,再根據(jù)全等三角形對應(yīng)邊相等,得出兩線段相等.例如圖,在?ABCD中,連接AC,BD相交于點O;求證:OA=OC,OB=OD.
2025-06-16 12:24
【總結(jié)】第十八章平行四邊形平行四邊形平行四邊形的性質(zhì)第1課時平行四邊形邊角的性質(zhì)分別的四邊形叫做平行四邊形.平行四邊形的、..,一條直線上任意一點到另一條直線的距離,叫做這兩條平行線之間的距離.對邊平行對邊相等
2025-06-16 12:18
【總結(jié)】平行四邊形的判定第1課時平行四邊形的判定(一)平行四邊形的判定定理(1)兩組對邊分別的四邊形是平行四邊形.(2)兩組對角分別的四邊形是平行四邊形.(3)對角線的四邊形是平行四邊形.相等相等互相平分探究點一:利用兩組對邊或兩組對角分別相等判定平行四邊形
2025-06-16 12:26