【總結】三角形全等的判定第1課時全等三角形與全等三角形的判定條件1.的兩個三角形叫做全等三角形,全等三角形的對應邊____,對應角____.2.兩個三角形只有一組或兩組對應相等的元素,這兩個三角形全等;兩個三角形有三組對應相等的元素,這兩個三角形
2025-10-31 04:27
【總結】三角形全等的條件⑵先任意畫出一個△ABC,再畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A/C/=AC。把畫好的△A/B/C/剪下,放到△ABC上,它們全等嗎?探究1已知:任意△ABC,畫一個△A/B/C/,使A/B/=AB,∠A/=∠A,A
2025-10-28 13:41
【總結】數學·八年級·上冊第十三章全等三角形湛江第一中學金沙灣學校林創(chuàng)三角形全等的判定問題:如何才能確定兩個三角形全等呢?提示:可以從以下幾個方面去考慮1、定義2、角3、邊4、邊和角
2025-10-28 18:15
【總結】創(chuàng)設情節(jié),提出問題下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合兩個三角形叫做全等三角形小試身手下列說法是否正確,并簡要說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,
2025-07-18 09:49
【總結】全等三角形下列各組圖形的形狀與大小有什么特點?能夠重合的圖形叫做全等圖形(1)(2)(3)(4)能夠重合的兩個三角形叫做全等三角形小試身手判斷下列說法是否正確,并說明理由:(1)邊長相等的正方形都是全等圖形;(2)同一面中華人民共和國國旗上,4個小五角星
2025-08-01 17:35
【總結】對應相等的元素兩邊一角兩角一邊三角三邊兩邊及其夾角兩邊及其中一邊的對角兩角及其夾邊兩角及其中一角的對邊三角形是否全等一定()不一定一定()一定()不一定一定()
2025-11-29 14:07
【總結】禮貌誠信自強不息兩條邊相等的三角形叫做等腰三角形等腰三角形中,相等的兩邊都叫做腰,另一邊叫做底邊,兩腰的夾角叫做頂角,腰和底邊的夾角叫做底角.ACB腰腰底邊頂角底角底角一起回憶復習概念性質1:等腰三角形的性質:等腰三
2025-11-01 01:47
【總結】(1)—SAS(邊角邊)什么叫全等三角形?兩個能完全重合的三角形叫做全等三角形。全等三角形的對應邊、對應角有什么重要性質?全等三角形的對應邊相等,對應角相等。已知△ABC≌△A’B’C’,△ABC的周長為10cm,AB=3cm,BC=4cm,則:A’B’=cm,B’C’=
2025-10-28 17:30
【總結】等腰三角形復習(二)例題分析?例1已知一腰和底邊上的高,求作等腰三角形。分析:我們首先在草稿上畫好一個示意圖,然后對照此圖寫出已知和求作并構思整個作圖過程……已知:線段a、h求作:△ABC,使AB=AC=a,高AD=h作法:1、作PQ⊥MN,垂足為D2、在DM上截取DA=h3、以點A為圓心,以
【總結】等腰三角形復習(一)名稱圖形概念性質與邊角關系判定等腰三角形ABC有兩邊相等的三角形是等腰三角形。,3.三線合一。.,。.名稱圖
2025-11-01 01:56
【總結】山亭育才中學翟夫連①∵AD是△ABC的中線∴BD=CDABDC②S△ABD=S△ADC(等底同高)③中線的取值范圍常用的輔助線(見中線加倍延長構造全等三角形)AB-AC2AB+AC2AD1中線1中線④重心(三
2025-10-31 22:05
【總結】全等三角形(復習)知識歸納三角形全等的識別的方法:SSS:三條邊對應相等的兩個三角形全等。SAS:有兩條邊和它們的夾角對應相等的兩個三角形全等。ASA:有兩個角和它們的夾邊對應相等的兩個三角形全等。AAS:有兩個角和其中一個角的對邊對應相等的兩個三角形全等。(直角三角形
2025-10-28 21:33
【總結】圖形的全等請欣賞圖片1請欣賞圖片2兩個能夠重合的圖形稱為全等圖形觀察下面兩組圖形,它們是不是全等圖形?為什么?與同伴進行交流。(1)(2)如果兩個圖形全等,它們的形狀和大小一定都相等練習:?一、找出下列圖形中的全等圖形與圖1所示圖形全等的圖形
【總結】三角形全等的條件(復習)全等三角形概念及性質:1:什么是全等三角形?一個三角形經過哪些變化可以得到它的全等形?2:全等三角形有哪些性質?能夠完全重合的兩個三角形叫做全等三角形。一個三角形經過平移、翻折、旋轉可以得到它的全等形。(1):全等三角形的對應邊相等、對應角相等。(2):全等三角形的周長相等、面積相等。(3)
2025-07-18 00:05
【總結】?FCDBA在綠茵場上,足球隊員在F處受到阻擋需要傳球,請幫助作出選擇,應傳給在C處的球員還是D處的球員,其射門不易射偏,請說明理由。(不考慮其他因素)三角形的外角ACBD相鄰的內角不相鄰的內角三角形的一邊與另一邊的延長線組成的角,如圖∠BCD三角形外
2025-10-28 13:40