【總結(jié)】等腰三角形第1課時(shí)等腰三角形的性質(zhì)請(qǐng)同學(xué)們拿出一張長(zhǎng)方形紙片,按照老師要求對(duì)折,然后用剪刀或小刀裁去陰影部分,再把裁剪后的直角三角形展開(kāi).得到的三角形有什么是什么三角形呢?ABCD創(chuàng)設(shè)情景明確目標(biāo)1.從折剪的過(guò)程可知,△ABC是什么三角形呢?2.在上述△ABC中,AB、AC、BC,∠B、∠C的
2025-06-17 19:12
【總結(jié)】等腰三角形的性質(zhì)定理1、從邊看:等腰三角形的兩腰相等。(定義)2、從角看:等腰三角形的兩底角相等。(性質(zhì)定理1)3、從重要線段看:等腰三角形的頂角平分線、底邊上的中線和高線互相重合。(性質(zhì)定理2)定義:有兩邊相等的三角形是等腰三角形。如何判定一個(gè)三角形是等腰三角形?還有其他方法嗎?等腰三角形的兩底角相等,
2024-11-24 13:18
【總結(jié)】第十三章軸對(duì)稱遵義學(xué)練考數(shù)學(xué)8上【R】等腰三角形等腰三角形第2課時(shí)等腰三角形的判定感謝您使用本課件,歡迎您提出寶貴意見(jiàn)!
2025-06-21 12:24
【總結(jié)】......等腰三角形考點(diǎn)一、等腰三角形的特征和識(shí)別⑴等腰三角形的兩個(gè)_____________相等(簡(jiǎn)寫(xiě)成“________________”)⑵等腰三角形的_________________、__________
2025-04-17 08:21
【總結(jié)】第十三章遵義學(xué)練考數(shù)學(xué)8上【R】等腰三角形第2課時(shí)等腰三角形的判定等腰三角形感謝您使用本課件,歡迎您提出寶貴意見(jiàn)!
【總結(jié)】等腰三角形的判定P143思考如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測(cè)得∠A=∠B.如果這兩艘救生船以同樣的速度同時(shí)出發(fā),能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?OBAOAB已知:如圖,在ΔOAB中,∠A=∠B,求證:OA=OB.證明:過(guò)O點(diǎn)作OC⊥AB,垂
2024-11-24 17:31
【總結(jié)】◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識(shí)導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三
2025-06-15 12:08
【總結(jié)】等腰三角形的性質(zhì)倉(cāng)山鎮(zhèn)中蔣良全復(fù)習(xí)已知:∠A(如右圖)求作:射線AD,使AD平分∠A.基本作圖:平分已知角A實(shí)驗(yàn)研究等腰三角形是一種特殊的三角形,它除具有一般三角形的性質(zhì)外,還有一些特殊性質(zhì).DACBACBDACB猜想
2024-11-24 15:54
【總結(jié)】第13章全等三角形等腰三角形等腰三角形的性質(zhì)1.的三角形是等腰三角形;的三角形是等邊三角形,等邊三角形是特殊的等腰三角形.2.等腰三角形的性質(zhì):性質(zhì)1:等腰三角形的相等,簡(jiǎn)稱為“”;有兩
2025-06-14 17:56
【總結(jié)】第十三章軸對(duì)稱等腰三角形等腰三角形第2課時(shí)等腰三角形的判定2022秋季數(shù)學(xué)八年級(jí)上冊(cè)?R等腰三角形的判定一個(gè)三角形有兩個(gè)角,則這兩個(gè)角所對(duì)的邊也(簡(jiǎn)寫(xiě)成“等角對(duì)”).自我診斷1.在△ABC中,∠B=∠C,AB=5,則AC的
2025-06-13 13:38
【總結(jié)】等腰三角形第2課時(shí)等腰三角形的判定如圖,位于在海上A、B兩處的兩艘救生船接到O處遇險(xiǎn)船只的報(bào)警,當(dāng)時(shí)測(cè)得∠A=∠B.如果這兩艘救生船以同樣的速度同時(shí)出發(fā),能不能大約同時(shí)趕到出事地點(diǎn)(不考慮風(fēng)浪因素)?AB0在一個(gè)三角形中,如果有兩個(gè)角相等,那么它們所對(duì)的邊有什么關(guān)系?創(chuàng)設(shè)情景明確目標(biāo)1.理解等腰三角
2025-06-17 13:16
【總結(jié)】等腰三角形(三)◆隨堂檢測(cè)1一個(gè)等邊三角形的角平分線、高、中線的總條數(shù)為_(kāi)________.,已知線段AB,分別以AB、為圓心,大于12AB長(zhǎng)為半徑畫(huà)弧,兩弧相交于點(diǎn)C、Q,連結(jié)CQ與AB相交于點(diǎn)D,連結(jié)AC,BC.那么:(1)∠ADC?________度;(2)當(dāng)線段4
2024-11-13 01:46
【總結(jié)】第一章三角形的證明1.等腰三角形(三)湖北宜昌市長(zhǎng)江中學(xué)李玉平一、學(xué)生知識(shí)狀況分析本節(jié)課是等腰三角形的第三課時(shí),通過(guò)前面兩課時(shí)的學(xué)習(xí),學(xué)生已經(jīng)掌握了等腰三角形的相關(guān)性質(zhì),并知道了用綜合法證明命題的基本要求和步驟。為學(xué)習(xí)等腰三角形的判定定理奠定了知識(shí)和方法的基礎(chǔ)。二、教學(xué)任務(wù)分析本節(jié)課的主要任務(wù)是探索等
2024-11-24 17:07
2025-06-14 18:47
【總結(jié)】探索·合作·創(chuàng)新三步五環(huán)教學(xué)法張麗紅學(xué)習(xí)目標(biāo)探索·合作·創(chuàng)新三步五環(huán)教學(xué)法、等邊三角形的性質(zhì)和判定進(jìn)行簡(jiǎn)單的計(jì)算、推理證明。,構(gòu)建等腰三角形的知識(shí)體系。,數(shù)形結(jié)合,轉(zhuǎn)化,方程等數(shù)學(xué)思想方法。探索·合作·創(chuàng)新三步五環(huán)教學(xué)法名