【正文】
分類號(hào) 密 級(jí) U D C 單位代碼 10733 甘肅農(nóng)業(yè)大學(xué)碩士學(xué)位論文干旱灌區(qū)制種玉米水肥耦合效應(yīng)的研究Studies on the Coupling Effects of WaterFertilizer of Seed Maize in the Arid Irrigation Area 劉 風(fēng)指導(dǎo)教師姓名 馬忠明 研究員 (甘肅農(nóng)業(yè)大學(xué) 蘭 州 730070) 學(xué) 位 名 稱 農(nóng)業(yè)推廣碩士 專 業(yè) 方 向 作 物 論文答辯日期 學(xué)位授予日期 答辯委員會(huì)主席 評(píng) 閱 人 2015年10月目 錄摘 要 ISummary III第一章 文獻(xiàn)綜述 1 有限灌溉條件下作物水分關(guān)系 2 有限灌溉與作物生產(chǎn)和產(chǎn)量形成 2 有限灌溉與作物吸水、光合和蒸騰 4 有限灌溉與作物蒸散量、產(chǎn)量和水分利用率 6 壟膜溝灌栽培對(duì)制種玉米產(chǎn)量和水分利用效率的影響 7 壟膜栽培的增溫效應(yīng) 7 不同栽培方式對(duì)制種玉米生育進(jìn)程的影響 7 栽培方式和灌溉定額對(duì)制種玉米產(chǎn)量構(gòu)成要素的影響 81. 不同栽培方式對(duì)水分利用效率的影響 8 9 水分與養(yǎng)分的互作效應(yīng) 10 水肥藕合效應(yīng)對(duì)作物生長(zhǎng)的影響 11 水肥藕合對(duì)產(chǎn)量的影響 11 水肥藕合對(duì)水分利用效率和肥料利用率的影響 12 水肥藕合對(duì)作物品質(zhì)的影響 13 本研究的目的及意義 13第二章 材料與方法 16 試驗(yàn)區(qū)概況 16 技術(shù)路線 16 試驗(yàn)設(shè)計(jì) 17 主要研究?jī)?nèi)容 18 水肥調(diào)控制下種玉米生育期水分利用規(guī)律的研究 19 水肥調(diào)控下制種玉米生育期養(yǎng)分利用規(guī)律的研究 19 水肥調(diào)控下制種玉米生育期干物質(zhì)含量的研究 19 水肥調(diào)控下制種玉米生育期生理指標(biāo)的研究 19 水肥調(diào)控下制種玉米產(chǎn)量的研究 19 測(cè)定項(xiàng)目與方法 19 數(shù)據(jù)處理與分析 20第三章 試驗(yàn)結(jié)果與分析 21 水肥耦合對(duì)制種玉米耗水量及耗水規(guī)律的影響 21 不同生育階段土壤含水量的變化 21 不同生育階段耗水量的變化 22 水肥耦合條件下水分利用效率的變化 23 水肥耦合對(duì)制種玉米土壤養(yǎng)分的影響 23 水肥耦合條件下土壤硝態(tài)氮含量的變化 24 水肥耦合條件下氮肥利用率的變化 24 水肥耦合對(duì)制種玉米生長(zhǎng)和產(chǎn)量的影響 25 25 水肥耦合條件下制種玉米葉片蒸騰速率的變化 26 水肥耦合條件下制種玉米葉片氣孔導(dǎo)度的變化 26 水肥調(diào)控下干物質(zhì)的變化 27 水肥調(diào)控下制種玉米產(chǎn)量的變化 27第四章 討論與結(jié)論 29 討論 29 水肥耦合對(duì)水肥利用率的影響 29 水肥耦合對(duì)氮肥利用率的影響 30 水肥耦合對(duì)制種玉米生長(zhǎng)發(fā)育和產(chǎn)量的影響 31 結(jié)論 32參考文獻(xiàn) 34致 謝 41作者簡(jiǎn)介 錯(cuò)誤!未定義書(shū)簽。導(dǎo)師簡(jiǎn)介 42原創(chuàng)性聲明 43學(xué)位論文版權(quán)認(rèn)定和使用授權(quán)書(shū) 43摘 要針對(duì)干旱灌區(qū)水資源不足和高產(chǎn)農(nóng)田長(zhǎng)期存在施肥量過(guò)高和水資源利用率低下的現(xiàn)狀,以河西走廊干旱灌區(qū)大面積種植的制種玉米為研究對(duì)象,以資源高效利用、作物高產(chǎn)穩(wěn)產(chǎn)、生態(tài)安全、水肥高效利用為總的原則,從作物水產(chǎn)量關(guān)系和水肥耦合等方面入手研究,開(kāi)展高產(chǎn)農(nóng)田水肥高效調(diào)控理論和水肥高效調(diào)控技術(shù)的研究,從而達(dá)到節(jié)約水資源、提高水肥資源利用率、降低農(nóng)田生成投入成本、提高單位面積產(chǎn)量的目的,從而為干旱綠洲灌區(qū)制種玉米高效、節(jié)水生產(chǎn)提供理論依據(jù)。通過(guò)研究該地區(qū)制種玉米在不同水肥組合下各主要生育期的水肥利用效率、生理指標(biāo)、干物質(zhì)含量和產(chǎn)量等方面的影響,得出如下研究結(jié)果:制種玉米在主要生育期耗水量以灌漿成熟期最高,當(dāng)灌水量增加時(shí),作物耗水量隨之增加,而水分利用效率逐漸降低,在相同灌水水平下,水分利用效率隨著施氮量的增加而增加。耗水強(qiáng)度在整個(gè)生育期表現(xiàn)出先增后減的趨勢(shì),在抽穗灌漿期耗水輕度最大。根據(jù)制種玉米的耗水規(guī)律,確定了適宜的灌水時(shí)期,分別為拔節(jié)期、大喇叭口期、抽雄吐絲期、灌漿中后期。在相同的施肥條件下,隨著灌水量和土層深度的增加,土壤硝態(tài)氮的含量呈現(xiàn)先減小后增加的趨勢(shì),氮肥利用率隨著灌水量的增加呈現(xiàn)出先增加后降低的趨勢(shì);在相同灌水條件下,隨著施氮量的增加,土壤中硝態(tài)氮含量明顯增加,當(dāng)灌水量小于4800 m3/hm2時(shí),隨著施氮量的增加,氮肥利用率逐漸升高,當(dāng)灌水量大于4800 m3/hm2時(shí),隨著施氮量的增加,氮肥利用率逐漸下降。制種玉米在拔節(jié)期間提高灌水量和施肥量均不能顯著增加干物質(zhì)含量。抽雄到成熟期間,增加灌水量和施肥量能顯著提高植株的干物質(zhì)含量,至成熟期灌水量和施氮量與干物質(zhì)積累量呈顯著正相關(guān)。制種玉米的光合生理指標(biāo)均在抽雄期達(dá)到最大值,但是不同水肥處理下結(jié)果不盡相同。葉片凈光合速率在高水高氮(W3N3)處理下達(dá)到最大值,葉片蒸騰速率在中水中氮(W2N2)處理下達(dá)到最大值,氣孔導(dǎo)度在高水中氮(W3N2)處理下達(dá)到最大值。在相同的施氮水平下,制種玉米的產(chǎn)量隨著灌水量的增加而增大。但是,在相同灌水水平下,高水高氮處理下制種玉米的產(chǎn)量反而低于高水中氮處理下制種玉米的產(chǎn)量,說(shuō)明在一定程度下降低水分或者減少氮肥的施用完全有可能達(dá)到高產(chǎn)的目的。關(guān)鍵詞:干旱灌區(qū);制種玉米;水肥耦合;灌溉SummaryWater resources in arid irrigation shortage and high yield farmland longstanding fertilization amount of high status and low utilization rate of water resources, to seed corn in Hexi Corridor arid irrigated area planted in large area as the research object, efficient use of resources, efficient use of stable production, high yield crop ecological security, water and fertilizer for the general principle, starting from the crop water the relationship between yield and water and fertilizer coupling and so on, to carry out research on high yield farmland fertilizer efficient control theory and control technology ofwater and fertilizer efficiency, so as to save water resource, improve the utilization rate, reducefarmland generated input costs, water and nutrient resources to improve the yield per unit area toarid oasis irrigation area, so as to provide a theoretical basis for efficient maize seed production,saving production. Through the research of corn seed production in the area of different water and fertilizer bination and stages of the water use efficiency, physiological index, effect of dry mattercontent and yield of etc., the results obtained are as follows:1. Maize in the growth stage of water consumption in grain filling the highest, when the amount of irrigation water increased, increased consumption of crops, and water use efficiency decreased gradually, in the same level of irrigation, water use efficiency increased with the increase of nitrogen application amount. Water consumption of mild in the whole growth period showed a trend of first increasing and then decreasing in heading stage to filling stage, the maximum water consumption of mild. According to the law of water consumption of maize seed production, determined the suitableirrigation period, respectively, at jointing stage, booting, anthesis silking stage, at the late grain filling stage.2. In the same fertilization conditions, with the increase of irrigation amount and soil depth, soil nitrate nitrogen content in the present first decreased and then increased, nitrogen utilization rate with the increase of irrigation amount showed increased first and then decreased。 in the same irrigation condition, with the increase of nitrogen, increased nitrate the content of nitrogen in soil, when irrigation amount was less than 4800 m3/hm2, with the increase of amount of nitrogen fertilizer, nitrogen utilization rate increased gradually, when the irrigation amount is greater than 4800 m3/hm2, with the increase of nitrogen, nitrogen use efficiency decreased.3. Maize in jointing period to improve the irrigation and fertilization could significantly increase the dry matter content. Tasseling to mature period, increased irrigation and fertilization could significantly increase the dry matter content of plants, to mature stage of irrigation and nitrogen application amount and dry matter accumulation was significant positive correlation.4. Maize photosynthetic physiological indexes in tasseling stage and reached the maximum value under different irrigation and fertilization treatments, but the results are not the same. Leaf net photosynthetic rate in the high water and high nitrogen (W3N3) treatment reaches the maximum value, the tr