【總結(jié)】勾股定理第1課時勾股定理(一)如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么a2+b2=c2.如圖,在△ABC中,∠C=90°.(1)若已知a,b,則斜邊c=;(2)若已知a,c,則b=;(3)若已知c,b,則a=.22
2025-06-12 12:25
【總結(jié)】勾股定理的逆定理:畫出邊長分別是下列各組數(shù)的三角形(單位:厘米)A:3、4、3;B:3、4、5;C:3、4、6;D:6、8、10:用你的量角器分別測量一下上述各三角形的最大角的度數(shù),并記錄如下:A:____B:____C:____D:____:請判斷一下上述你所畫的三角形的形狀.
2025-06-13 05:56
2025-06-13 05:52
【總結(jié)】勾股定理的逆定理【基礎(chǔ)梳理】一、互逆命題(定理):如果兩個命題的題設(shè)和結(jié)論正好_____,那么這樣的兩個命題叫做互逆命題.如果把其中一個叫做原命題,那么另一個叫做它的_______.相反逆命題:如果一個定理的_______經(jīng)過證明是正確的,那么它也是一個定理,稱這兩個定理互為逆定理.逆命題
2025-06-12 21:10
【總結(jié)】第2課時勾股定理(二),也可以表示,數(shù)軸上的點和.一一對應(yīng).(,,…)的點.如圖所示..有關(guān)銳角三角形或鈍角三角形的計算問題也可以轉(zhuǎn)化為含有三角形的計算問題,應(yīng)用勾股定理加以解決,關(guān)鍵在于找出這個三角形.23無理數(shù)實數(shù)
2025-06-12 12:23
【總結(jié)】第十七章 勾股定理 勾股定理第1課時 勾股定理:如果直角三角形的兩條直角邊長分別為a,b,斜邊長為c,那么 .?明勾股定理的常用方法: ,如“趙爽弦圖”等.積如圖所示,則面積為S的正方形的邊長是( ) ?a2+b2=c2
2025-06-18 12:26
2025-06-17 20:59
【總結(jié)】第十七章勾股定理勾股定理第1課時勾股定理的驗證勾股定理:如果直角三角形的兩直角邊長分別為a,b,斜邊長為c,那么a,b,c三條邊滿足的關(guān)系式是.a2+b2=c2知識點1:勾股定理的認(rèn)識解:(1)A所代表的正方形的面積為144+81=225.(2)B所代表的正方形的面積為625-400=22
2025-06-16 15:03
【總結(jié)】第2課時 勾股定理的實際應(yīng)用實際生活中的與直角三角形有關(guān)的許多問題.如長度、高度、距離、面積、體積等問題往往需要用勾股定理來解決.強量得家里新購置的彩電熒光屏的長為58cm,寬為46cm,則這臺電視機的尺寸(即電視機屏幕對角線的長度,實際測量的誤差可不計)是( )(約2
2025-06-14 05:26
【總結(jié)】第2課時勾股定理在實際生活中的應(yīng)用通過預(yù)習(xí)利用勾股定理解決生活中的實際問題.知識點:勾股定理的應(yīng)用【思路點撥】注重數(shù)形結(jié)合的思想,把實際問題轉(zhuǎn)化為數(shù)學(xué)問題來解決.例1如圖所示,一個圓柱形鐵桶的底面半徑是12cm,高為10cm,若在其中隱藏一細鐵棒,問鐵棒的長度最長不能超過多長?解:由題意可知:底面圓的半徑為12
2025-06-12 12:11
【總結(jié)】勾股定理的逆定理勾股定理的逆定理知識目標(biāo)目標(biāo)突破目標(biāo)一直角三角形的判別方法勾股定理的逆定理例1判斷由線段a,b,c組成的三角形是否是直角三角形.(1)a=5,b=13,c=12;(2)a=4,b=5,c=6;(3)
2025-06-12 03:25
【總結(jié)】第2課時 勾股定理的應(yīng)用知識點1知識點2勾股定理的實際應(yīng)用樹,一棵高10?m,另一棵高4?m,兩樹相距8?鳥從一棵樹的樹梢飛到另一棵樹的樹梢,問小鳥至少飛行(??B??)?m?m?m?m
2025-06-15 12:01
【總結(jié)】勾股定理第十七章勾股定理導(dǎo)入新課講授新課當(dāng)堂練習(xí)課堂小結(jié)八年級數(shù)學(xué)下(RJ)教學(xué)課件第2課時勾股定理在實際生活中的應(yīng)用學(xué)習(xí)目標(biāo)1.會運用勾股定理求線段長及解決簡單的實際問題.(重點),利用勾股定理建立已知邊與未知邊長度之間的聯(lián)系
【總結(jié)】第十七章 勾股定理 勾股定理第1課時 勾股定理的認(rèn)識知識點1知識點2勾股定理的證明選項中,不能用來證明勾股定理的是(??D??)2.【教材延伸】如圖,“趙爽弦圖”是由四個全等的直角三角形拼成一個大的正方形,是我國古代數(shù)學(xué)的驕傲,巧妙地利用面積關(guān)系證明了勾股定理.已
【總結(jié)】第3課時利用勾股定理作圖與計算,有的表示,因此,數(shù)與數(shù)軸上的點是一一對應(yīng)關(guān)系.有理數(shù)無理數(shù)實2.當(dāng)直角三角形的兩直角邊長分別為1,1時,斜邊長為2,當(dāng)兩直角邊長分別為2,1時,斜邊長為,如圖,依此規(guī)律可以畫出表示長為4,5,6?的線段.3
2025-06-16 15:14