【正文】
納米結(jié)構(gòu)物理學(xué) 課程內(nèi)容 1. 納米科學(xué)概論 , 低維體系量子力學(xué) 2. 固體物理 , 表面 /界面科學(xué)及材料生長簡介 3. 納米結(jié)構(gòu)常用分析與制備方法 4. 納米線 (管 ,帶 ,桿 ) 5. 團(tuán)簇與晶粒 6. 磁性納米結(jié)構(gòu)及自旋電子學(xué) 1 nm = 109 m = 103 ?m = 10 197。 納米結(jié)構(gòu) (Nanostructures): material systems with length scale of ~ 1100 nm in at least one dimension 2D: quantum wells, thin films, 2D electron gas 1D: quantum wires, nanowires, nanotubes, nanorods 0D: quantum dots, macromolecules, clusters, nanocrystallites Between individual atoms/molecules and macroscopic bulk materials: Mesoscopic structures (介觀結(jié)構(gòu) ), with distinct properties not available from atoms or bulk crystals 類型 材料性質(zhì)隨體系尺度的變化: 量變到質(zhì)變 ? Quantum confinement: quantization and reduced dimensionality of electronic states ? Quantum coherence and decoherence ? Surface/interface states ? Metastability, adjustable size and shape → Properties tunable ? High speed, pact density and efficiency Unique properties of nanostructures: Two approaches in our understanding and exploitation of material world: from the bottom up and from the top down The bottomup approach: Atoms, simple molecules (wellunderstood subnm world) → Macro molecules, polymers… → clusters, crystallites, nanowires, bio molecules… The topdown approach: Bulk crystals → Discrete devices → Integrated circuits → LSI → VLSI → ULSI (~ ?m) → ??? → Shrinking and shrinking into deep ?m 兩種途徑在納米尺度相會 For uptodate Edition visit 半導(dǎo)體工業(yè)路線圖 Bottomup approach can deal with systems consisting of ? 104 atoms quite accurately 納米研究的目標(biāo) ? Search for new physical phenomena existing at nanoscales ? Fabricate nanodevices with novel functions ? Search for processes to fabricate nanostructures with high accuracy and low cost ? Explore new experimental and theoretical tools to study nanostructures Nanoscience amp。 nanotechnology: Multidisciplinary and rapiddeveloping 現(xiàn)狀與未來 : 一個學(xué)術(shù)界,政府和產(chǎn)業(yè)部門高度重視的戰(zhàn)略性研究領(lǐng)域 Quantum mechanics of lowdimensional systems Timeindependent Schr246。dinger equation: )()()()(2 22 rrrr ??? EVm ???? ?Free particle [with V(r) = 0], plane wave: ?(r , t) = A exp(ikr iEt/?) Energy and momentum of the particle: E = ?? = ?2k2/(2m) = ?2(kx2 + ky2 + kz2)/(2m) = ?(k) p = ?k de Broglie wavelength: ? = h/p Probability of