freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

20xx-20xx備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯(cuò)試卷篇含詳細(xì)答案(已修改)

2025-03-30 22:26 本頁(yè)面
 

【正文】 20202021備戰(zhàn)中考數(shù)學(xué)備考之平行四邊形壓軸突破訓(xùn)練∶培優(yōu)易錯(cuò)試卷篇含詳細(xì)答案一、平行四邊形1.(問(wèn)題情景)利用三角形的面積相等來(lái)求解的方法是一種常見(jiàn)的等積法,此方法是我們解決幾何問(wèn)題的途徑之一.例如:張老師給小聰提出這樣一個(gè)問(wèn)題:如圖1,在△ABC中,AB=3,AD=6,問(wèn)△ABC的高AD與CE的比是多少?小聰?shù)挠?jì)算思路是:根據(jù)題意得:S△ABC=BC?AD=AB?CE.從而得2AD=CE,∴ 請(qǐng)運(yùn)用上述材料中所積累的經(jīng)驗(yàn)和方法解決下列問(wèn)題:(1)(類(lèi)比探究)如圖2,在?ABCD中,點(diǎn)E、F分別在AD,CD上,且AF=CE,并相交于點(diǎn)O,連接BE、BF,求證:BO平分角AOC.(2)(探究延伸)如圖3,已知直線m∥n,點(diǎn)A、C是直線m上兩點(diǎn),點(diǎn)B、D是直線n上兩點(diǎn),點(diǎn)P是線段CD中點(diǎn),且∠APB=90176。,兩平行線m、n間的距離為4.求證:PA?PB=2AB.(3)(遷移應(yīng)用)如圖4,E為AB邊上一點(diǎn),ED⊥AD,CE⊥CB,垂足分別為D,C,∠DAB=∠B,AB=,BC=2,AC=,又已知M、N分別為AE、BE的中點(diǎn),連接DM、CN.求△DEM與△CEN的周長(zhǎng)之和.【答案】(1)見(jiàn)解析;(2)見(jiàn)解析;(3)5+【解析】分析:(1)、根據(jù)平行四邊形的性質(zhì)得出△ABF和△BCE的面積相等,過(guò)點(diǎn)B作OG⊥AF于G,OH⊥CE于H,從而得出AF=CE,然后證明△BOG和△BOH全等,從而得出∠BOG=∠BOH,即角平分線;(2)、過(guò)點(diǎn)P作PG⊥n于G,交m于F,根據(jù)平行線的性質(zhì)得出△CPF和△DPG全等,延長(zhǎng)BP交AC于E,證明△CPE和△DPB全等,根據(jù)等積法得出AB=APPB,從而得出答案;(3)、延長(zhǎng)AD,BC交于點(diǎn)G,過(guò)點(diǎn)A作AF⊥BC于F,設(shè)CF=x,根據(jù)Rt△ABF和Rt△ACF的勾股定理得出x的值,根據(jù)等積法得出AE=2DM=2EM,BE=2CN=2EN, DM+CN=AB,從而得出兩個(gè)三角形的周長(zhǎng)之和.同理:EM+EN=AB詳解:證明:(1)如圖2, ∵四邊形ABCD是平行四邊形,∴S△ABF=S?ABCD,S△BCE=S?ABCD, ∴S△ABF=S△BCE,過(guò)點(diǎn)B作OG⊥AF于G,OH⊥CE于H, ∴S△ABF=AFBG,S△BCE=CEBH,∴AFBG=CEBH,即:AFBG=CEBH, ∵AF=CE, ∴BG=BH,在Rt△BOG和Rt△BOH中, ∴Rt△BOG≌Rt△BOH, ∴∠BOG=∠BOH,∴OB平分∠AOC,(2)如圖3,過(guò)點(diǎn)P作PG⊥n于G,交m于F, ∵m∥n, ∴PF⊥AC,∴∠CFP=∠BGP=90176。, ∵點(diǎn)P是CD中點(diǎn),在△CPF和△DPG中, ∴△CPF≌△DPG, ∴PF=PG=FG=2,延長(zhǎng)BP交AC于E, ∵m∥n, ∴∠ECP=∠BDP, ∴CP=DP,在△CPE和△DPB中, ∴△CPE≌△DPB, ∴PE=PB,∵∠APB=90176。, ∴AE=AB, ∴S△APE=S△APB, ∵S△APE=AEPF=AE=AB,S△APB=APPB,∴AB=APPB, 即:PA?PB=2AB;(3)如圖4,延長(zhǎng)AD,BC交于點(diǎn)G, ∵∠BAD=∠B, ∴AG=BG,過(guò)點(diǎn)A作AF⊥BC于F,設(shè)CF=x(x>0), ∴BF=BC+CF=x+2, 在Rt△ABF中,AB=,根據(jù)勾股定理得,AF2=AB2﹣BF2=34﹣(x+2)2, 在Rt△ACF中,AC=,根據(jù)勾股定理得,AF2=AC2﹣CF2=26﹣x2,∴34﹣(x+2)2=26﹣x2, ∴x=﹣1(舍)或x=1, ∴AF==5,連接EG, ∵S△ABG=BGAF=S△AEG+S△BEG=AGDE+BGCE=BG(DE+CE),∴DE+CE=AF=5, 在Rt△ADE中,點(diǎn)M是AE的中點(diǎn), ∴AE=2DM=2EM,同理:BE=2CN=2EN, ∵AB=AE+BE, ∴2DM+2CN=AB, ∴DM+CN=AB,同理:EM+EN=AB ∴△DEM與△CEN的周長(zhǎng)之和=DE+DM+EM+CE+CN+EN=(DE+CE)+[(DM+CN)+(EM+EN)]=(DE+CN)+AB=5+.點(diǎn)睛:本題主要考查的就是三角形全等的判定與性質(zhì)以及三角形的等積法,綜合性非常強(qiáng),難度較大.在解決這個(gè)問(wèn)題的關(guān)鍵就是作出輔助線,然后根據(jù)勾股定理和三角形全等得出各個(gè)線段之間的關(guān)系.2.已知:在菱形ABCD中,E,F(xiàn)是BD上的兩點(diǎn),且AE∥CF.求證:四邊形AECF是菱形.【答案】見(jiàn)解析【解析】【分析】由菱形的性質(zhì)可得AB∥CD,AB=CD,∠ADF=∠CDF,由“SAS”可證△ADF≌△CDF,可得AF=CF,由△ABE≌△CDF,可得AE=CF,由平行四邊形的判定和菱形的判定可得四邊形AECF是菱形.【詳解】證明:∵四邊形ABCD是菱形∴AB∥CD,AB=CD,∠ADF=∠CDF,∵AB=CD,∠ADF=∠CDF,DF=DF∴△ADF≌△CDF(SAS)∴AF=CF,∵AB∥CD,AE∥CF∴∠ABE=∠CDF,∠AEF=∠CFE∴∠AEB=∠CFD,∠ABE=∠CDF,AB=CD∴△ABE≌△CDF(AAS)∴AE=CF,且AE∥CF∴四邊形AECF是平行四邊形又∵AF=CF,∴四邊形AECF是菱形【點(diǎn)睛】本題主要考查菱形的判定定理,首先要判定其為平行四邊形,這是菱形判定的基本判定.3.如圖所示,矩形ABCD中,點(diǎn)E在CB的延長(zhǎng)線上,使CE=AC,連接AE,點(diǎn)F是AE的中點(diǎn),連接BF、DF,求證:BF⊥DF.【答案】見(jiàn)解析.【解析】【分析】延長(zhǎng)BF,交DA的延長(zhǎng)線于點(diǎn)M,連接BD,進(jìn)而求證△AFM≌△EFB,得AM=BE,F(xiàn)B=FM,即可求得BC+BE=AD+AM,進(jìn)而求得BD=BM,根據(jù)等腰三角形三線合一的性質(zhì)即可求證BF⊥DF.【詳解】延長(zhǎng)BF,交DA的延長(zhǎng)線于點(diǎn)M,連接BD.∵四邊形ABCD是矩形,∴MD∥BC,∴∠AMF=∠EBF,
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評(píng)公示相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
公安備案圖鄂ICP備17016276號(hào)-1