freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

論文——初中數(shù)學(xué)概念教學(xué)實例探究-文庫吧

2024-11-16 23:19 本頁面


【正文】 課堂教學(xué)有效性。綜上幾點的思考,初中數(shù)學(xué)概念教學(xué)應(yīng)從學(xué)生的實際生活﹑已有的知識經(jīng)驗﹑從學(xué)生的認識規(guī)律出發(fā)。使學(xué)生樂于學(xué)習(xí)﹑勤于探究,發(fā)展學(xué)生的思維能力,促進他們的全面發(fā)展和個性發(fā)展,從而提高數(shù)學(xué)教學(xué)質(zhì)量。第二篇:初中數(shù)學(xué)概念教學(xué)論文:淺論初中數(shù)學(xué)概念教學(xué)淺論初中數(shù)學(xué)概念教學(xué)勐臘二中 周朝旭摘要:在中學(xué)數(shù)學(xué)教學(xué)中,正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只要對概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學(xué)教學(xué)過程中,數(shù)學(xué)概念的教學(xué)顯得尤為重要。學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對數(shù)學(xué)概念的牢固掌握與深刻理解與否。關(guān)鍵詞:數(shù)學(xué)能力、發(fā)展、理解、剖析、揭示概念是客觀事物本質(zhì)屬性在人們頭腦中的反映。數(shù)學(xué)概念反映現(xiàn)實世界的空間形式和數(shù)量關(guān)系的本質(zhì)屬性的思維形式。在中學(xué)數(shù)學(xué)教學(xué)中,正確理解數(shù)學(xué)概念是掌握數(shù)學(xué)基礎(chǔ)知識的前提,是學(xué)好定理、公式、法則和數(shù)學(xué)思想的基礎(chǔ),搞清概念是提高解題能力的關(guān)鍵。只要對概念理解的深透,才能在解題中做出正確的判斷。因此,在數(shù)學(xué)教學(xué)過程中,數(shù)學(xué)概念的教學(xué)顯得尤為重要。學(xué)生數(shù)學(xué)能力的發(fā)展取決于他對數(shù)學(xué)概念的牢固掌握與深刻理解與否。而在現(xiàn)實中,許多學(xué)生對數(shù)學(xué)的學(xué)習(xí),只注重盲目的做習(xí)題,不注重對數(shù)學(xué)概念的掌握,對基本概念含糊不清。做習(xí)題不懂得從基本概念入手,思考解題依據(jù),探索解題方法,而是跟著感覺走。這樣的學(xué)習(xí),必然越學(xué)越糊涂,因而數(shù)學(xué)概念的教學(xué)在整個數(shù)學(xué)教學(xué)中有其不容忽視的地位與作用。下面僅結(jié)合本人平時的教學(xué)實踐,談一點膚淺的認識與體會。一、概念的引入:、熟知的具體事例中進行引入。如“圓”的概念的引出前,可讓同學(xué)們聯(lián)想生活中見過的年輪、太陽、五環(huán)旗、圓狀跑道等實物的形狀,再讓同學(xué)用圓規(guī)在紙上畫圓,也可用準備好的定長的線繩,將一端固定,而另一端帶有鉛筆并繞固定端旋轉(zhuǎn)一周,從而引導(dǎo)同學(xué)們自己發(fā)現(xiàn)圓的形成過程,進而總結(jié)出圓的特點:圓周上任意一點到圓心的距離相等,從而猜想歸納出“圓”的概念。概念復(fù)習(xí)的起步是在已有的認知結(jié)構(gòu)的基礎(chǔ)上進行的。因此,在教學(xué)新概念前,如果能對學(xué)生認知結(jié)構(gòu)中原有的適當(dāng)概念作一些類比引入新概念,則有利于促進新概念的形成。例如:在教學(xué)一元二次方程時,就可以先復(fù)習(xí)一元一次方程,因為一元一次方程是基礎(chǔ),一元二次方程是延伸,復(fù)習(xí)一元一次方程是合乎知識邏輯的。通過比較得出兩種方程都是只含有一個未知數(shù)的整式方程,差異僅在于未知數(shù)的最高次數(shù)不同。由此,很容易建立起“一元二次方程”的概念。二、分析概念含義,抓住概念本質(zhì)。,突出關(guān)鍵詞。數(shù)學(xué)概念嚴謹、準確、簡練。教師的語言對于學(xué)生感知教材,形成概念有重要的意義,因此要特別注意用詞的嚴格性和準確性。教師要用生動、形象的語言講清概念的每一個字、句、符號的意義,特別是關(guān)鍵的字、詞、句,這是指導(dǎo)學(xué)生掌握概念,并認識概念的前提。如:“分解因式”概念:“把一個多項式化成幾個整式的積的形式,這種變形叫把這個多項式分解因式?!痹诮虒W(xué)中學(xué)生往往只注重“積”這個關(guān)鍵詞,而忽略了“整式”,易造成對分解因式的錯誤認識。所以在教學(xué)中務(wù)必強調(diào),并與學(xué)生分析這兩處關(guān)鍵詞的含義,加深對概念的理解。,抓住本質(zhì)。數(shù)學(xué)概念大多數(shù)是通過描述定義給出他的確切含義,他屬于理性認識,但來源于感性認識,所以對于這類概念一定要抓住它的本質(zhì)屬性。如:“互為補角”的概念:“如果兩個角的和是平角,則這兩個角互為補角?!逼浔举|(zhì)屬性:(1)必須具備兩個角之和為180176。,一個角為180176?;蛉齻€角為180176。都不是互為補角,互補角只就兩個角而言。(2)互補的兩個角只是數(shù)量上的關(guān)系,這與兩個角的位置無關(guān)。通過這兩個本質(zhì)屬性的分析,學(xué)生對“互為補角”有了全面的理解。,深化概念。數(shù)學(xué)概念都是從正面闡述,一些學(xué)生只從文字上理解,以為掌握了概念的本質(zhì),而碰到具體的數(shù)學(xué)問題卻又難以做出正確的判斷。因此,在教學(xué)過程中,必須在學(xué)生正面認識概念的基礎(chǔ)上,通過反例或變式從反面去剖析數(shù)學(xué)概念,凸顯對象中隱蔽的本質(zhì)要素,加深學(xué)生對概念理解的全面性。如:在學(xué)習(xí)對頂角的概念后,讓學(xué)生做題:(1)下列表示的兩個角,哪組是對頂角?(a)兩條直線相交,相對的兩個角(b)頂點相同的兩個角(c)同一個角的兩個鄰補角 前后聯(lián)系,多方印證,加深認識。部分學(xué)生對概念的全面理解不可能一蹴而就,而是要經(jīng)歷:實踐——認識——再實踐——再認識的過程,這是個“正確”與“錯誤”搖擺不定的過程,更是一個對概念的理解不斷深化的過程。事實上,學(xué)生在初步學(xué)習(xí)某一數(shù)學(xué)概念之后,對概念的理解并不怎么深刻,而是通過對后續(xù)知識的學(xué)習(xí)讓學(xué)生回過頭來再對概念進行加深理解,遵循“循環(huán)反復(fù),螺旋上升”的學(xué)習(xí)原則。如:學(xué)生剛接觸“二次函數(shù)”的概念時,僅能從形式上判斷某一函數(shù)是否為二次函數(shù)。但當(dāng)他們學(xué)習(xí)了其圖象,研究了圖象的性質(zhì)后就能根據(jù)a得出圖象的開口方向,由a、b確定圖象的對稱軸,由a、b、c給出圖象的頂點坐標。這時對二次函數(shù)的概念自是記憶深刻,能脫口而出了。三、概念的記憶。,舉一反三。、如:一元一次方程的概念:“只含有一個未知數(shù),并且未知數(shù)的指數(shù)為一(次),這樣的方程叫做一元一次方程”,清楚了“元”與“次”的含義,則一元一次方程、二元一次方程、一元一次不等式等概念就水到渠成了。通過縱橫對比,在類比中找特點,在聯(lián)想中求共性,把數(shù)學(xué)知識系統(tǒng)化,學(xué)生輕輕松松記概念。,聯(lián)系區(qū)別。任何一個概念都有它的內(nèi)涵和外延,外延的大小與內(nèi)涵成反比關(guān)系。內(nèi)涵越多,外延就越小;內(nèi)涵越少,外延就越大。把握概念的內(nèi)涵與外延,能大大增加學(xué)生對概念的明晰度,提高鑒別能力,避免張冠李戴,為此,把所教概念同類似的相關(guān)的概念相比較,分清它們的異同點及聯(lián)系,也就顯得十分重要。如:學(xué)完“軸對稱”與“軸對稱圖形”的概念后,可引導(dǎo)學(xué)生找出兩者之間的聯(lián)系和區(qū)別。聯(lián)系:兩者都有對稱軸,如把成軸對稱的兩個圖形看成一個整體,那么這個整體就是一個軸對稱圖形,如把一個軸對稱圖形位于對稱軸兩旁的部分看成兩個圖形,那么這兩部分成軸對稱。區(qū)別:“軸對稱”是指兩個圖形成軸對稱,主要指這兩個圖形特殊的位置關(guān)系;而“軸對稱圖形”僅僅是指一個圖形,主要指這個圖形所具備的特殊形狀。通過這樣的聯(lián)系與區(qū)別,學(xué)生加深了對概念的理解,避免混淆,從而提高學(xué)生認知概念的清晰度。,圖表體現(xiàn)。有從屬關(guān)系的概念其外延之間有著互相包含的關(guān)系,在復(fù)習(xí)階段若以圖表的形式表現(xiàn),能使概念系統(tǒng)化、條理化,有利于學(xué)生的記憶和理解。四、概念的鞏固。如:在四邊形這一章中:平行四邊形具有四邊形所有性質(zhì),矩形具有平行四邊形所有性質(zhì),菱形、正方形具有平行四邊形的所有性質(zhì),正方形具有矩形、菱形的所有性質(zhì)
點擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1