【總結(jié)】2.平面向量的坐標(biāo)運(yùn)算情景:我們知道,在直角坐標(biāo)平面內(nèi),每一個(gè)點(diǎn)都可用一對(duì)有序?qū)崝?shù)(即它的坐標(biāo))表示,如點(diǎn)A(x,y)等.思考:對(duì)于每一個(gè)向量如何表示?若知道平面向量的坐標(biāo),應(yīng)如何進(jìn)行運(yùn)算?1.兩個(gè)向量和的坐標(biāo)等于________________________________.即若a=(x1,y1),b
2024-12-09 03:42
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角課時(shí)跟蹤檢測(cè)新人教A版必修4考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難向量數(shù)量積的運(yùn)算1、412與模有關(guān)的問題2、59、10向量的夾角與垂直問題3、67、8、111.設(shè)向量a=(1,0),b=??
2024-12-09 03:41
【總結(jié)】【優(yōu)化指導(dǎo)】2021年高中數(shù)學(xué)平面向量數(shù)量積的坐標(biāo)表示、模、夾角學(xué)業(yè)達(dá)標(biāo)測(cè)試新人教A版必修41.若向量a=(3,m),b=(2,-1),a·b=0,則實(shí)數(shù)m的值為()A.-32C.2D.6解析:a·b=3×2+m×(-1)=6-m=0
【總結(jié)】平面向量的正交分解及坐標(biāo)表示一、向量的分解1e2eaADFE量的分解、通過幾何畫板研究向1的分解圖線性和與為、請(qǐng)畫212eea1:,1????μλDCBACμABλAD共線當(dāng)且僅當(dāng)、、三點(diǎn)則、如圖令例ABCD已知O,A,B是平面上的三個(gè)點(diǎn),直線AB上有一點(diǎn)C,滿足
2025-07-25 06:26
【總結(jié)】平面幾何中的向量方法學(xué)習(xí)目標(biāo)、垂直、相等、夾角和距離等問題.——向量法和坐標(biāo)法.,體驗(yàn)向量在解決幾何問題中的工具作用,培養(yǎng)創(chuàng)新精神.合作學(xué)習(xí)一、設(shè)計(jì)問題,創(chuàng)設(shè)情境問題1:若O為△ABC重心,則=.問題2:水渠橫斷面是四邊形ABCD,,且||=||,則這個(gè)四邊形為.
2024-11-19 20:38
【總結(jié)】第一頁(yè),編輯于星期六:點(diǎn)三十三分。,2.3.4平面向量共線的坐標(biāo)表示,第二頁(yè),編輯于星期六:點(diǎn)三十三分。,,登高攬勝拓界展懷,課前自主學(xué)習(xí),第三頁(yè),編輯于星期六:點(diǎn)三十三分。,第四頁(yè),編輯于星期六:點(diǎn)...
2024-10-22 18:49
【總結(jié)】課題平面向量基本定理教學(xué)目標(biāo)知識(shí)與技能理解平面向量基本定理的內(nèi)容,了解向量一組基底的含義過程與方法在平面內(nèi),當(dāng)一組基底選定后,會(huì)用這組基底來表示其他向量情感態(tài)度價(jià)值觀啟發(fā)引導(dǎo),講練結(jié)合重點(diǎn)會(huì)應(yīng)用平面向量基本定理解決有關(guān)平面向量的綜合問題難點(diǎn)同上教學(xué)設(shè)
【總結(jié)】圓學(xué)子夢(mèng)想鑄金字品牌溫馨提示:此套題為Word版,請(qǐng)按住Ctrl,滑動(dòng)鼠標(biāo)滾軸,調(diào)節(jié)合適的觀看比例,答案解析附后。課時(shí)提能演練(二十)/課后鞏固作業(yè)(二十)(30分鐘50分)一、選擇題(每小題4分,共16分)≠0,且a的起點(diǎn)不是原點(diǎn)O,則()(A)使得=a的點(diǎn)A不是唯一的(B)不存在點(diǎn)B,使得=a(C)使得=-a的點(diǎn)C是存在的,也是唯一的
2025-07-23 20:42
【總結(jié)】復(fù)習(xí)1、平面向量基本定理的內(nèi)容是什么?2、什么是平面向量的基底?如果e1,e2是同一平面內(nèi)的兩個(gè)不共線的向量,那么對(duì)于這一平面內(nèi)的任一向量a,有且只有一對(duì)實(shí)數(shù)λ1,λ2使得a=λ1e1+λ2e2平面向量基本定理:不共線的平面向量e1,e2叫做這一平面內(nèi)所有向量的一組基底.
2024-11-17 17:33
【總結(jié)】平面向量的實(shí)際背景及基本概念一、向量中有關(guān)概念的辨析、向量、有向線段對(duì)這幾個(gè)概念的理解容易出現(xiàn)概念不清的問題.數(shù)量只有大小,沒有方向,其大小可以用實(shí)數(shù)來表示,它是一個(gè)代數(shù)量,數(shù)量之間可以比較大小;向量既有大小又有方向,向量之間不可以比較大小;有向線段是向量的直觀性表示,不能說向量就是有向線段.、共線向量、相等向量平行向量也
2024-11-19 20:39
【總結(jié)】平面向量數(shù)量積的物理背景及其含義一、向量的向量積在物理學(xué)中,由于討論像力矩以及物體繞軸旋轉(zhuǎn)時(shí)的角速度與線速度之間的關(guān)系等這類問題的需要,就必須引進(jìn)兩向量乘法的另一運(yùn)算——向量的向量積.定義如下:兩個(gè)向量a與b的向量積是一個(gè)新的向量c:(1)c的模等于以a及b兩個(gè)向量為邊所作成的平行四邊形的面積;(2)c垂直于
2024-12-05 06:47
【總結(jié)】第二章平面向量平面向量的數(shù)量積平面向量數(shù)量積的坐標(biāo)表示、模、夾角1.理解并掌握平面向量的數(shù)量積的坐標(biāo)表示及運(yùn)算.(重點(diǎn))2.能夠用兩個(gè)向量的坐標(biāo)來判斷向量的垂直關(guān)系.(難點(diǎn))3.增強(qiáng)用向量法與坐標(biāo)法來處理向量問題的能力.(易混點(diǎn))1.兩向量的數(shù)量積與兩向量垂直的坐標(biāo)表示設(shè)向量a=(x1,y
2024-12-04 18:51
【總結(jié)】平面向量基本定理考查知識(shí)點(diǎn)及角度難易度及題號(hào)基礎(chǔ)中檔稍難基底及用基底表示向量1、36、8、9向量夾角問題2、4綜合問題57、10111.已知e1和e2是表示平面內(nèi)所有向量的一組基底,那么下面四組向量中不能作為一組基底的是()A.e1和e1+e2B.e
2024-11-19 19:36
【總結(jié)】平面向量基本定理1.設(shè)O點(diǎn)是平行四邊形ABCD兩對(duì)角線的交點(diǎn),下列向量組中可作為這個(gè)平行四邊形所在平面上表示其他所有向量的基底的是()①AD→與AB→;②DA→與BC→;③CA→與DC→;④OD→與OB→.A.①②B.①③C.①④D.③④解析:只要是平面上不共線的兩個(gè)向量
【總結(jié)】關(guān)于《平面向量基本定理》的課后反思當(dāng)前,新課程的改革與素質(zhì)教育工作已全面展開,它對(duì)教育、教學(xué)不斷提出更新、更高的要求,而課堂教學(xué)是教育教學(xué)的主陣地,那種以老師講解為主,使學(xué)生常常處于消極、被動(dòng)、受壓抑的狀態(tài),既不能充分地調(diào)動(dòng)學(xué)生的主動(dòng)性、積極性,又不能很好地培養(yǎng)學(xué)生的各方面能力的傳統(tǒng)灌輸教學(xué)法與新課程的改革理念及“以學(xué)生為本”的教學(xué)思想已是格格不入。所以課堂教學(xué)