【正文】
式定理求最值,可簡(jiǎn)記為 “積定和最小,和定積最大 ”. (2)應(yīng)用算術(shù) —幾何平均不等式定理,要注意三個(gè)條件即“一正二定三相等 ”同時(shí)具備時(shí),函數(shù)方可取得最值.其中定值條件決定著平均不等式應(yīng)用的可行性,獲得定值需要一定的技巧,如:配系數(shù)、拆項(xiàng)、分離常數(shù)、平方變形等. (3)當(dāng)不具備使用平均不等式定理的條件時(shí),求函數(shù)的最值可考慮利用函數(shù)的單調(diào)性. [通一類(lèi) ] 1.已知 x∈ R+ ,求函數(shù) y= x2(1- x)的最大值. 解 : y = x2(1 - x ) = x x (1 - x ) = x x ( 2 - 2 x ) 12 ≤12 ????????x + x + 2 - 2 x33=12827=427. 當(dāng)且僅當(dāng) x = 2 - 2 x ,即 x =23時(shí)取等號(hào). 此時(shí), yma x=427. [研一題 ] [ 例 2] 設(shè) a 、 b 、 c ∈ R + ,求證: ( 1) (1a2 +1b2 +1c2 )( a + b + c )2≥ 27 ; ( 2) ( a + b + c )(1a + b+1b + c+1a + c) ≥92. [精講詳析 ] 本題考查平均不等式的應(yīng)用,解答本題需要先觀察求證式子的結(jié)構(gòu),然后通過(guò)變形轉(zhuǎn)化為用平均不等式證明的問(wèn)題. ( 1) ∵ a , b , c ∈ R + , ∴ a + b + c ≥ 33abc > 0 , 從而 ( a + b + c )2≥ 93a2b2c2> 0 , 又1a2 +1b2 +1c2 ≥ 331a2b2c2 > 0 , ∴ (1a2 +1b2 +1c2 )( a + b + c )2 ≥ 331a2b2c2 93a2b2c2= 27. 當(dāng)且僅當(dāng) a = b = c 時(shí),等號(hào)成立. ( 2) ∵ a ,