【總結(jié)】一、教材分析:本節(jié)內(nèi)容是前面圓的性質(zhì)的重要體現(xiàn),是圓的軸對稱性的具體化,也是今后證明線段相等、角相等、弧相等、垂直關(guān)系的重要依據(jù),同時也是為進行圓的計算和作圖提供了方法和依據(jù),所以它在教材中處于非常重要的位置另外,本節(jié)課通過“實驗--觀察--猜想——合作交流——證明”的途徑,進一步培養(yǎng)學(xué)生的動手能力,觀察能力,分析、聯(lián)想能力、與人合作
2024-12-05 15:48
【總結(jié)】課題:圓的軸對稱性(1)教學(xué)目標(biāo)1.使學(xué)生理解圓的軸對稱性.2.掌握垂徑定理.3.學(xué)會運用垂徑定理解決有關(guān)弦、弧、弦心距以及半徑之間的證明和計算問題.教學(xué)重點垂徑定理是圓的軸對稱性的重要體現(xiàn),是今后解決有關(guān)計算、證明和作圖問題的重要依據(jù),它有著廣泛的應(yīng)用,因此,本節(jié)課的教學(xué)重點是:垂徑定理及其應(yīng)用.教學(xué)難點
2024-11-20 02:16
【總結(jié)】例3:⑴如圖,順次連結(jié)⊙O的兩條直徑AC和BD的端點,所得的四邊形是什么特殊四邊形?ODCBA⑵如果要把直徑為30cm的圓柱形原木鋸成一根橫截面為正方形的木材,并使截面盡可能地大,應(yīng)怎樣鋸?最大橫截面面積是多少?⑶如果這根原木長15m,問鋸出地木材的體積為多少m3(樹皮等損耗略去不計)?ODC
2024-11-12 18:26
【總結(jié)】第2章對稱圖形——圓圓的對稱性第2課時圓的軸對稱性與垂徑定理知識目標(biāo)目標(biāo)突破第2章對稱圖形——圓總結(jié)反思知識目標(biāo)第2課時圓的軸對稱性與垂徑定理1.通過回顧軸對稱圖形的概念,了解圓是軸對稱圖形.2.通過探索圓的軸對稱性,掌握并應(yīng)用垂徑定理求線段的長度.3.通過
2025-06-18 06:53
【總結(jié)】1、圓是對稱圖形嗎?它有哪些對稱性?回顧:圓既是軸對稱圖形,又是中心對稱圖形,也是旋轉(zhuǎn)對稱圖形。旋轉(zhuǎn)角度可以是任意度數(shù)。對稱軸是過圓心任意一條直線。2、能否用手中的圓演示出它的各種對稱性呢?圓的對稱軸在哪里,對稱中心和旋轉(zhuǎn)中心在哪里?將圖中的扇形AOB繞點O逆時針旋轉(zhuǎn)某個角度。在得到的圖形中,同學(xué)們可以通
2024-12-01 00:45
【總結(jié)】圓的對稱性第二課時九年級數(shù)下學(xué)期北師大版1、圓是對稱圖形嗎?它有哪些對稱性?;仡櫍簣A既是軸對稱圖形,又是中心對稱圖形.2、能否用手中的圓演示出它的各種對稱性呢?圓的對稱軸在哪里,對稱中心在哪里?OO'兩個圓有什么特點?●O用旋轉(zhuǎn)的方法可以得到:一個圓繞著它的圓
2024-11-06 23:20
【總結(jié)】第2章圓圓的對稱性圓是生活中常見的圖形,許多物體都給我們以圓的形象.圓是平面內(nèi)到一定點的距離等于定長的所有點組成的圖形.·定長叫作半徑.這個定點叫作圓心.OA圓也可以看成是平面內(nèi)一個動點繞一個定點旋轉(zhuǎn)一周所形成的圖形,定點叫作圓心.以點O為圓心的圓叫作圓O,記作⊙
2024-12-08 02:59
【總結(jié)】九年級數(shù)學(xué)(上)第三章圓圓的對稱性?定理垂直于弦的直徑平分弦,并且平分弦所的兩條弧.?老師提示:?此定理是圓中一個重要的結(jié)論,三種語言要相互轉(zhuǎn)化,形成整體,才能運用自如.想一想1駛向勝利的彼岸●OABCDM└CD⊥AB,如
2024-12-08 08:37
【總結(jié)】創(chuàng)設(shè)情境,引入新課復(fù)習(xí)提問:(2)正三角形是軸對稱性圖形嗎?(1)什么是軸對稱圖形(3)圓是否為軸對稱圖形?如果是,它的對稱軸是什么?你能找到多少條對稱軸?如果一個圖形沿著一條直線對折,兩側(cè)的圖形能完全重合,這個圖形就是軸對稱圖形。有幾條對稱軸?是3在白紙上任意作一個圓和這個
2024-11-27 23:42
【總結(jié)】線段、角的對稱性(2)在一張薄紙上畫一條線段AB.你能找出與線段AB的端點A、B距離相等的點嗎?這樣的點有多少個?做一做BA一個點到一條線段的兩端的距離相等,那么這個點在這條線段的垂直平分線上嗎?想一想BAQM線段、角的對稱性(2)因為QA=QB,所以
2024-11-24 21:05
【總結(jié)】第三章圓2.圓的對稱性(二)一、學(xué)生知識狀況分析學(xué)生的知識技能基礎(chǔ):學(xué)生在七、八年級已經(jīng)學(xué)習(xí)過軸對稱圖形以及中心對稱圖形的有關(guān)概念及性質(zhì),以及本節(jié)定理的證明要用到三角形全等的知識等。在上節(jié)課中,學(xué)生學(xué)習(xí)了圓的軸對稱性,并利用軸對稱性研究了垂徑定理及其逆定理。學(xué)生具備一定的研究圖形的方法,基本掌握探究問題的途徑,具備合情推理的能力,
2024-12-09 08:13
【總結(jié)】第三章分子對稱性與分子點群Chapter3.MolecularSymmetryandIntroductiontoGroupTheory生物界的對稱性對稱操作:對分子圖形進行某一操作,不改變其中任何兩點間的距離,作用后的圖形和作用前的圖形如果不經(jīng)過原子標(biāo)號是不能區(qū)分的,這樣的操
2025-05-02 06:26
【總結(jié)】.圓的對稱性(二)初中數(shù)學(xué)九年級上冊(蘇科版)?如圖,如AB=CD則()如OABCD⌒⌒
2024-11-30 03:57
【總結(jié)】初中數(shù)學(xué)九年級上冊(蘇科版)圓的對稱性(一)1、什么是中心對稱圖形?舉例說明把一個圖形繞著某一個點旋轉(zhuǎn)180°,如果旋轉(zhuǎn)后的圖形能夠和原來的圖形互相重合,那么這個圖形叫做中心對稱圖形。平行四邊形、矩形、菱形、正方形復(fù)習(xí)回憶2、圓是中心對稱圖形,圓心是它的對稱中心。1.在兩張透明紙片上,分別作半
【總結(jié)】對稱性制作人:王云松.OAB圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?圓繞圓心旋轉(zhuǎn)?18
2024-11-06 19:11