【總結(jié)】課題:基本不等式科目:數(shù)學(xué)教學(xué)對象:高一學(xué)生課時:1課時提供者:李文毅單位:大同四中一、教學(xué)內(nèi)容分析?本節(jié)課《基本不等式》是《數(shù)學(xué)必修五(人教A版)》第三章第四節(jié)的內(nèi)容,主要內(nèi)容是通過現(xiàn)實問題進(jìn)行數(shù)學(xué)實驗猜想,構(gòu)造數(shù)學(xué)模型,得到均值不等式;并通過在學(xué)習(xí)算術(shù)平均數(shù)與幾何平均數(shù)的定義基礎(chǔ)上,理解均值不等式的幾何解釋;,對于不等式的證明及利用均值不等式求
2025-04-17 00:20
【總結(jié)】......一、選擇題1.若,且,那么的最小值為(???)A.B.C.D.2.設(shè)若的最小值( )A.
2025-03-25 00:08
【總結(jié)】......均值不等式應(yīng)用1.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時取“=”)2.(1)若,則 (2)若,則 (當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(
2025-06-17 15:34
【總結(jié)】不等式的基本知識(一)不等式與不等關(guān)系1、應(yīng)用不等式(組)表示不等關(guān)系;不等式的主要性質(zhì):(1)對稱性: (2)傳遞性:(3)加法法則:;(同向可加)(4)乘法法則:; (同向同正可乘)(5)倒數(shù)法則: (6)乘方法則:(7)開方法則:2、應(yīng)用不等式的性質(zhì)比較兩個實數(shù)的大?。鹤鞑罘ǎㄗ鞑睢冃巍?/span>
2025-06-26 07:09
【總結(jié)】第一篇:均值不等式的證明 均值不等式的證明 設(shè)a1,a2,a3...an是n個正實數(shù),求證(a1+a2+a3+...+an)/n≥n次√(a1*a2*a3*...*an).要簡單的詳細(xì)過程,謝謝!...
2025-10-27 22:00
【總結(jié)】第一篇:均值不等式及其應(yīng)用 教師寄語:一切的方法都要落實到動手實踐中 高三一輪復(fù)習(xí)數(shù)學(xué)學(xué)案 均值不等式及其應(yīng)用 一.考綱要求及重難點 要求:(?。海y度為中低檔題,.考點梳理 a+:3;...
2025-10-18 10:26
【總結(jié)】第一篇:必修五基本不等式知識點 第三章:不等式、不等式解法、線性規(guī)劃 不等(等)號的定義:a-b0?ab;a-b=0?a=b;a-b0?a (1)ab?ba(對稱性)(2)ab...
2025-10-20 04:09
【總結(jié)】第一篇:均值不等式的應(yīng)用 均值不等式的應(yīng)用 教學(xué)目標(biāo): 教學(xué)重點:應(yīng)用教學(xué)難點:應(yīng)用 教學(xué)方法:講練結(jié)合教 具:多媒體教學(xué)過程 一、復(fù)習(xí)引入: ,平均不等式:調(diào)和平均數(shù)≤幾何平均數(shù)≤...
2025-10-18 19:15
【總結(jié)】第一篇:均值不等式教學(xué)設(shè)計 教學(xué)目標(biāo) (一)知識與技能:明確均值不等式及其使用條件,能用均值不等式解決簡單的最值問題.(二)過程與方法:通過對問題主動探究,實現(xiàn)定理的發(fā)現(xiàn),體驗知識與規(guī)律的形成...
2025-10-18 19:23
【總結(jié)】第一篇:均值不等式說課稿 說課題目:高中數(shù)學(xué)人教B版必修第三章第二節(jié) -------均值不等式(1) 一、本節(jié)內(nèi)容的地位和作用 均值不等式又叫做基本不等式,選自人教B版(必修5)的第3章的2節(jié)...
2025-10-27 17:55
【總結(jié)】均值不等式一、基本知識梳理:如果a﹑b∈R+,那么叫做這兩個正數(shù)的算術(shù)平均值.:如果a﹑b∈R+,那么叫做這兩個正數(shù)的幾何平均值:如果a﹑b∈R,那么a2+b2≥(當(dāng)且僅當(dāng)a=b時,取“=”)均值定理:如果a﹑b∈R+,那么≥(當(dāng)且僅
【總結(jié)】均值不等式及其應(yīng)用一.均值不等式1.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)2.(1)若,則(2)若,則(當(dāng)且僅當(dāng)時取“=”)(3)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”);若,則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”)若,則(當(dāng)且僅當(dāng)時取“=”),則(當(dāng)且僅當(dāng)時取“=”
【總結(jié)】精品資源均值不等式應(yīng)用(二)教學(xué)目的:要求學(xué)生更熟悉基本不等式和極值定理,從而更熟練地處理一些最值問題。教學(xué)重點: 均值不等式應(yīng)用教學(xué)過程:一、復(fù)習(xí):基本不等式、極值定理二、例題:1.求函數(shù)的最大值,下列解法是否正確?為什么?解一:∴解二:當(dāng)即時答:以上兩種解法均有錯誤。解一錯在取不到“=”,即不存在使得;解二錯在不是定值
2025-06-24 04:36
【總結(jié)】不等式的基本知識(一)不等式與不等關(guān)系1、應(yīng)用不等式(組)表示不等關(guān)系;不等式的主要性質(zhì):(1)對稱性: (2)傳遞性:(3)加法法則:;(同向可加)(4)乘法法則:; (同向同正可乘)(5)倒數(shù)法則: (6)乘方法則:(7)開方法則:2、應(yīng)用不等式的性質(zhì)比較兩個實數(shù)的大?。鹤鞑罘ǎㄗ鞑睢冃巍袛喾枴Y(jié)論)3、應(yīng)用不等
2025-06-26 07:20
【總結(jié)】不等式與不等式組本章知識點:1、不等式:用或號表示大小關(guān)系的式子叫做不等式。Shu532、不等式的解:把使不等式成立的未知數(shù)的值叫做不等式的解。3、解集:使不等式成立的x的取值范圍叫做不等式解的集合,簡稱解集。4、不等式的性質(zhì):1、不等式兩邊同時加(或減)同一個數(shù)(或式子),不等號的方向不變。a+cb+c,a-
2025-04-04 03:11