freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

概率論與數(shù)理統(tǒng)計浙江大學第四版-課后習題答案完全版05296-文庫吧

2025-06-07 00:13 本頁面


【正文】 的?!? A=A1A2+ A1A3A5+A4A5+A4A3A2四種情況不互斥∴ P (A)=P (A1A2)+P (A1A3A5) +P (A4A5)+P (A4A3A2)-P (A1A2A3A5)+ P (A1A2 A4A5)+ P (A1A2 A3 A4) +P (A1A3 A4A5)+ P (A1A2 A3A4A5) P (A2 A3 A4A5)+ P (A1A2A3 A4A5)+ P (A1A2 A3 A4A5)+ (A1A2 A3 A4A5) + P (A1A2 A3 A4A5)-P (A1A2 A3 A4A5)又由于A1,A2, A3, A4,A5互相獨立。故 P (A)=p2+ p3+ p2+ p3-[p4 +p4 +p4 +p4 +p5 +p4] +[ p5 + p5+ p5+ p5]-p5=2 p2+ 3p3-5p4 +2 p5[二十六(1)]設有4個獨立工作的元件1,2,3,4。它們的可靠性分別為P1,P2,P3,P4,將它們按圖(1)的方式聯(lián)接,求系統(tǒng)的可靠性。記Ai表示第i個元件正常工作,i=1,2,3,4,2413A表示系統(tǒng)正常?!? A=A1A2A3+ A1A4兩種情況不互斥∴ P (A)= P (A1A2A3)+P (A1A4)-P (A1A2A3 A4) (加法公式)= P (A1) P (A2)P (A3)+ P (A1) P (A4)-P (A1) P (A2)P (A3)P (A4)= P1P2P3+ P1P4-P1P2P3P4 (A1, A2, A3, A4獨立)34.[三十一] 袋中裝有m只正品硬幣,n只次品硬幣,(次品硬幣的兩面均印有國徽)。在袋中任取一只,將它投擲r次,已知每次都得到國徽。問這只硬幣是正品的概率為多少?解:設“出現(xiàn)r次國徽面”=Br “任取一只是正品”=A由全概率公式,有 (條件概率定義與乘法公式)35.甲、乙、丙三人同時對飛機進行射擊,。,若三人都擊中,飛機必定被擊落。求飛機被擊落的概率。解:高Hi表示飛機被i人擊中,i=1,2,3。B1,B2,B2分別表示甲、乙、丙擊中飛機∵ ,三種情況互斥。 三種情況互斥 又 B1,B2,B2獨立?!? + +=P (H3)=P (B1)P (B2)P (B3)==又因: A=H1A+H2A+H3A 三種情況互斥故由全概率公式,有P (A)= P(H1)P (A|H1)+P (H2)P (A|H2)+P (H3)P (AH3) =++1=36.[三十三]設由以往記錄的數(shù)據(jù)分析。某船只運輸某種物品損壞2%(這一事件記為A1),10%(事件A2),90%(事件A3)的概率分別為P (A1)=, P (A2)=, P (A2)=,現(xiàn)從中隨機地獨立地取三件,發(fā)現(xiàn)這三件都是好的(這一事件記為B),試分別求P (A1|B) P (A2|B), P (A3|B)(這里設物品件數(shù)很多,取出第一件以后不影響取第二件的概率,所以取第一、第二、第三件是互相獨立地)∵ B表取得三件好物品。 B=A1B+A2B+A3B 三種情況互斥由全概率公式,有∴ P (B)= P(A1)P (B|A1)+P (A2)P (B|A2)+P (A3)P (B|A3) =()3+()3+()3= 37.[三十四] 將A,B,C三個字母之一輸入信道,輸出為原字母的概率為α,而輸出為其它一字母的概率都是(1-α)/2。今將字母串AAAA,BBBB,CCCC之一輸入信道,輸入AAAA,BBBB,CCCC的概率分別為p1, p2, p3 (p1 +p2+p3=1),已知輸出為ABCA,問輸入的是AAAA的概率是多少?(設信道傳輸每個字母的工作是相互獨立的。)解:設D表示輸出信號為ABCA,BBB3分別表示輸入信號為AAAA,BBBB,CCCC,則BBB3為一完備事件組,且P(Bi)=Pi, i=1, 2, 3。再設A發(fā)、A收分別表示發(fā)出、接收字母A,其余類推,依題意有P (A收| A發(fā))= P (B收| B發(fā))= P (C收| C發(fā))=α,P (A收| B發(fā))= P (A收| C發(fā))= P (B收| A發(fā))= P (B收| C發(fā))= P (C收| A發(fā))= P (C收| B發(fā))=又P (ABCA|AAAA)= P (D | B 1) = P (A收| A發(fā)) P (B收| A發(fā)) P (C收| A發(fā)) P (A收| A發(fā)) =,同樣可得P (D | B 2) = P (D | B 3) =于是由全概率公式,得由Bayes公式,得P (AAAA|ABCA)= P (B 1 | D ) = =[二十九] 設第一只盒子裝有3只藍球,2只綠球,2只白球;第二只盒子裝有2只藍球,3只綠球,4只白球。獨立地分別從兩只盒子各取一只球。(1)求至少有一只藍球的概率,(2)求有一只藍球一只白球的概率,(3)已知至少有一只藍球,求有一只藍球一只白球的概率。解:記AAA3分別表示是從第一只盒子中取到一只藍球、綠球、白球,BBB3分別表示是從第二只盒子中取到一只藍球、綠球、白球。(1)記C={至少有一只藍球}C= A1B1+ A1B2+ A1B3+ A2B1+ A3B1,5種情況互斥由概率有限可加性,得(2)記D={有一只藍球,一只白球},而且知D= A1B3+A3B1兩種情況互斥(3)[三十] A,B,C三人在同一辦公室工作,房間有三部電話,據(jù)統(tǒng)計知,打給A,B,C的電話的概率分別為。他們三人常因工作外出,A,B,C三人外出的概率分別為,設三人的行動相互獨立,求(1)無人接電話的概率;(2)被呼叫人在辦公室的概率;若某一時間斷打進了3個電話,求(3)這3個電話打給同一人的概率;(4)這3個電話打給不同人的概率;(5)這3個電話都打給B,而B卻都不在的概率。解:記CCC3分別表示打給A,B,C的電話 DDD3分別表示A,B,C外出注意到CCC3獨立,且 (1)P(無人接電話)=P (D1D2D3)= P (D1)P (D2)P (D3) =(2)記G=“被呼叫人在辦公室”,三種情況互斥,由有限可加性與乘法公式(3)H為“這3個電話打給同一個人”(4)R為“這3個電話打給不同的人”R由六種互斥情況組成,每種情況為打給A,B,C的三個電話,每種情況的概率為于是(5)由于是知道每次打電話都給B,其概率是1,所以每一次打給B電話而B不在的概率為,且各次情況相互獨立于是 P(3個電話都打給B,B都不在的概率)=第二章 隨機變量及其分布1.[一] 一袋中有5只乒乓球,編號為5,在其中同時取三只,以X表示取出的三只球中的最大號碼,寫出隨機變量X的分布律解:X可以取值3,4,5,分布律為 也可列為下表X: 3, 4,5P:3.[三] 設在15只同類型零件中有2只是次品,在其中取三次,每次任取一只,作不放回抽樣,以X表示取出次品的只數(shù),(1)求X的分布律,(2)畫出分布律的圖形。解:任取三只,其中新含次品個數(shù)X可能為0,1,2個。Px12O再列為下表X: 0, 1, 2P: 4.[四] 進行重復獨立實驗,設每次成功的概率為p,失敗的概率為q =1-p(0p1)(1)將實驗進行到出現(xiàn)一次成功為止,以X表示所需的試驗次數(shù),求X的分布律。(此時稱X服從以p為參數(shù)的幾何分布。)(2)將實驗進行到出現(xiàn)r次成功為止,以Y表示所需的試驗次數(shù),求Y的分布律。(此時稱Y服從以r, p為參數(shù)的巴斯卡分布。)(3)一籃球運動員的投籃命中率為45%,以X表示他首次投中時累計已投籃的次數(shù),寫出X的分布律,并計算X取偶數(shù)的概率。解:(1)P (X=k)=qk-1p k=1,2,…… (2)Y=r+n={最后一次實驗前r+n-1次有n次失敗,且最后一次成功}其中 q=1-p,或記r+n=k,則 P{Y=k}= (3)P (X=k) = ()k- k=1,2…P (X取偶數(shù))=6.[六] 一大樓裝有5個同類型的供水設備,問在同一時刻(1)恰有2個設備被使用的概率是多少?(2)至少有3個設備被使用的概率是多少?(3)至多有3個設備被使用的概率是多少?(4)至少有一個設備被使用的概率是多少?[五] 一房間有3扇同樣大小的窗子,其中只有一扇是打開的。有一只鳥自開著的窗子飛入了房間,它只能從開著的窗子飛出去。鳥在房子里飛來飛去,試圖飛出房間。假定鳥是沒有記憶的,鳥飛向各扇窗子是隨機的。(1)以X表示鳥為了飛出房間試飛的次數(shù),求X的分布律。(2)戶主聲稱,他養(yǎng)的一只鳥,是有記憶的,它飛向任一窗子的嘗試不多于一次。以Y表示這只聰明的鳥為了飛出房間試飛的次數(shù),如戶主所說是確實的,試求Y的分布律。(3)求試飛次數(shù)X小于Y的概率;求試飛次數(shù)Y小于X的概率。解:(1)X的可能取值為1,2,3,…,n,…P {X=n}=P {前n-1次飛向了另2扇窗子,第n次飛了出去} =, n=1,2,……(2)Y的可能取值為1,2,3 P {Y=1}=P {第1次飛了出去}= P {Y=2}=P {第1次飛向 另2扇窗子中的一扇,第2次飛了出去} = P {Y=3}=P {第1,2次飛向了另2扇窗子,第3次飛了出去} = 同上, 故8.[八] 甲、乙二人投籃,, ,令各投三次。求(1)二人投中次數(shù)相等的概率。記X表甲三次投籃中投中的次數(shù)Y表乙三次投籃中投中的次數(shù)由于甲、乙每次投籃獨立,且彼此投籃也獨立。P (X=Y)=P (X=0, Y=0)+P (X=2, Y=2)+P (X=3, Y=3) = P (X=0) P (Y=0)+ P (X=1) P (Y=1)+ P (X=2) P (Y=2)+ P (X=3) P (Y=3) = ()3 ()3+ [ (2)甲比乙投中次數(shù)多的概率。 P (XY)=P (X=1, Y=0)+P (X=2, Y=0)+P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2)=P (X=1) P (Y=0) + P (X=2, Y=0)+ P (X=2, Y=1)+ P (X=3) P (Y=0)+ P (X=3) P (Y=1)+ P (X=3) P (Y=2)= 9.[十] 有甲、乙兩種味道和顏色極為相似的名酒各4杯。如果從中挑4杯,能將甲種酒全部挑出來,算是試驗成功一次。(1)某人隨機地去猜,問他試驗成功一次的概率是多少?(2)某人聲稱他通過品嘗能區(qū)分兩種酒。他連續(xù)試驗10次,成功3次。試問他是猜對的,還是他確有區(qū)分的能力(設各次試驗是相互獨立的。)解:(1)P (一次成功)=(2)P (連續(xù)試驗10次,成功3次)= 。此概率太小,按實際推斷原理,就認為他確有區(qū)分能力。[九] 有一大批產品,其驗收方案如下,先做第一次檢驗:從中任取10件,經驗收無次品接受這批產品,次品數(shù)大于2拒收;否則作第二次檢驗,其做法是從中再任取5件,僅當5件中無次品時接受這批產品,若產品的次品率為10%,求(1)這批產品經第一次檢驗就能接受的概率(2)需作第二次檢驗的概率(3)這批產品按第2次檢驗的標準被接受的概率(4)這批產品在第1次檢驗未能做決定且第二次檢驗時被通過的概率(5)這批產品被接受的概率解:X表示10件中次品的個數(shù),Y表示5件中次品的個數(shù), 由于產品總數(shù)很大,故X~B(10,),Y~B(5,)(近似服從)(1)P {X=0}=≈(2)P {X≤2}=P {X=2}+ P {X=1}=(3)P {Y=0}= 5≈(4)P {0X≤2,Y=0} ({0X≤2}與{ Y=2}獨立) = P {0X≤2}P {Y=0} =(5)P {X=0}+ P {0X≤2,Y=0} ≈+=12.[十三] 電話交換臺每分鐘的呼喚次數(shù)服從參數(shù)為4的泊松分布,求(1)每分鐘恰有8次呼喚的概率法一: (直接計算)法二: P ( X= 8 )= P (X ≥8)-P (X ≥9)(查λ= 4泊松分布表)。 = -=(2)每分鐘的呼喚次數(shù)大于10的概率。 P (X10)=P (X ≥11)=(查表計算)[十二 (2)]每分鐘呼喚次數(shù)大于3的概率。[十六] 以X表示某商店從早晨開始營業(yè)起直到第一顧客到達的等待時間(以分計),X的分布函數(shù)是求下述概率:(1)P{至多3分鐘};(2)P {至少4分鐘};(3)P{3分鐘至4分鐘之間};(4)P{至多3分鐘或至少4分鐘};(5)P{}解:(1)P{至多3分鐘}= P {X≤3} = (2)P {至少4分鐘} P (X ≥4) = (3)P{3分鐘至4分鐘之間}= P {3X≤4}= (4)P{至多3分鐘或至少4分鐘}= P{至多3分鐘}+P{至少4分鐘} = (5)P{}= P (X=)
點擊復制文檔內容
高考資料相關推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1