【總結(jié)】章末小結(jié)與提升相關(guān)概念弦與直徑弧、半圓、優(yōu)弧、劣弧等圓與等弧基本性質(zhì)垂徑定理及推論(軸對稱性)弧、弦、圓心角之間的關(guān)系圓周角定理及推論圓內(nèi)接四邊形的性質(zhì)與圓有關(guān)的位置關(guān)系點與圓的位置關(guān)系點在圓外點在圓上點在圓內(nèi)直線和圓的位置關(guān)系
2025-06-14 02:03
【總結(jié)】第三章圓本章總結(jié)提升知識框架整合提升第三章圓知識框架本章總結(jié)提升整合提升本章總結(jié)提升問題1垂徑定理垂徑定理的內(nèi)容是什么?應(yīng)用垂徑定理解決問題時常與哪些定理結(jié)合?本章總結(jié)提升例1在半徑為5cm的⊙O中,如果弦CD=8cm,直徑AB⊥CD,垂足為
2025-06-18 01:15
【總結(jié)】5確定圓的條件,以及過不在同一直線上的三個點作圓的方法.2.了解三角形的外接圓、三角形的外心等概念.3.經(jīng)歷不在同一直線上的三個點確定一個圓的探索過程,培養(yǎng)學(xué)生的探索能力.一位考古學(xué)家在長沙馬王堆漢墓挖掘時,發(fā)現(xiàn)一圓形瓷器碎片,你能幫助這位考古學(xué)家畫出這個碎片所在的整圓,以便于進行深入的研究嗎?要確定一個圓必須滿
2025-06-15 02:56
2025-06-15 02:51
【總結(jié)】5確定圓的條件【基礎(chǔ)梳理】,必須確定___________和半徑的長度.(1)過一個點可作_____個圓,過兩個點可作_____個圓.(2)_______________的三個點確定一個圓.圓心的位置無數(shù)無數(shù)不在同一直線上三角形的_________確定的圓.(1)定義:三
2025-06-21 02:26
2025-06-12 12:40
【總結(jié)】◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎第一階◎第二階◎第三階)◆知識導(dǎo)航◆典例導(dǎo)學(xué)◆反饋演練(◎
2025-06-14 05:17
2025-06-14 05:20
【總結(jié)】第三章圓知識點1正多邊形與圓(C)120°的六邊形一定是正六邊形n邊形的對稱軸不一定有n條n邊形的每一個外角度數(shù)等于它的中心角度數(shù),又是中心對稱圖形2.小穎同學(xué)在手工制作中,把一個邊長為12cm的等邊三角形紙片貼到一個圓形的紙片上,若三角形的三個頂點恰好都在這個圓上,則圓的半
2025-06-12 00:42
【總結(jié)】北京師范大學(xué)出版社九年級|下冊第三章圓1圓【復(fù)習(xí)舊知】問題1在七年級上學(xué)期,我們已經(jīng)對圓有了初步認識,對圓的相關(guān)知識你還記得嗎?⑴什么樣的圖形叫做圓?什么點稱乊為圓的圓心?怎樣的線段稱乊為圓的半徑?⑵圓弧(?。┦窃趺炊x的?⑶什么圖形叫做扇形?什么角叫做圓心角?【激發(fā)動機
2025-06-12 08:22
【總結(jié)】2圓的對稱性第三章圓課堂達標素養(yǎng)提升第三章圓2圓的對稱性課堂達標一、選擇題2圓的對稱性1.下列說法中,正確的是()A.等弦所對的弧相等B.等弧所對的弦相等C.相等的圓心角所對的弦也相等D.相等的弦所對的圓心角也相等B[解析]
2025-06-18 00:41
2025-06-12 12:09
【總結(jié)】北京師范大學(xué)出版社九年級|下冊第三章圓1圓【復(fù)習(xí)舊知】問題1在七年級上學(xué)期,我們已經(jīng)對圓有了初步認識,對圓的相關(guān)知識你還記得嗎?⑴什么樣的圖形叫做圓?什么點稱乊為圓的圓心?怎樣的線段稱乊為圓的半徑?⑵圓?。ɑ。┦窃趺炊x的?⑶什么圖形叫做扇形?什么角叫做圓心角?【激發(fā)動機
2025-06-12 08:19
【總結(jié)】*切線長定理導(dǎo)入新課講授新課當堂練習(xí)課堂小結(jié)第三章圓;,初步學(xué)會運用切線長定理進行計算與證明.(重點)學(xué)習(xí)目標POO.PBAAB問題1通過前面的學(xué)習(xí),我們了解到如何過圓上一點作已知圓的切線(如左圖所示),如果點P是圓外一點,又怎么作該圓的切線呢?問題2過圓外一點
2025-06-12 00:35
【總結(jié)】*垂徑定理第三章圓導(dǎo)入新課講授新課當堂練習(xí)課堂小結(jié),了解圓是軸對稱圖形.垂直于弦的直徑的性質(zhì)和推論,并能應(yīng)用它解決一些簡單的計算、證明和作圖問題.(重點).(難點)學(xué)習(xí)目標問題:你知道趙州橋嗎?它的主橋是圓弧形,它的跨度(弧所對的弦的長)為37m,拱高(弧的中點到弦的距離)為,你
2025-06-15 12:03