【總結(jié)】本卷第1頁(共5頁)2020高考數(shù)學(xué)總復(fù)習(xí)三角恒等變換練習(xí)題一、選擇題1.已知(,0)2x???,4cos5x?,則?x2tan()A.247B.247?C.724D.724?2.函數(shù)3sin4cos5yxx??
2025-08-20 20:21
【總結(jié)】三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請把答案寫在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為________.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實數(shù)m的取值范圍是_________.5.若tanα=3,則cos2α+3sin2α=
2025-06-22 22:13
【總結(jié)】......三角恒等變換專題復(fù)習(xí)教學(xué)目標(biāo):1、能利用單位圓中的三角函數(shù)線推導(dǎo)出的正弦、余弦、正切的誘導(dǎo)公式;2、理解同角三角函數(shù)的基本關(guān)系式:;3、可熟練運用三角函數(shù)見的基本關(guān)系式解決各種問題。教學(xué)重難點:
2025-06-23 18:30
【總結(jié)】三角函數(shù)恒等變形的基本策略。(1)常值代換:特別是用“1”的代換,如1=cos2θ+sin2θ=tanx·cotx=tan45°等。(2)項的分拆與角的配湊。如分拆項:sin2x+2cos2x=(sin2x+cos2x)+cos2x=1+cos2x;配湊角:α=(α+β)-β,β=-等。(3)降次與升次。(4)化弦(切)法。(4)引入輔助角。asinθ+bco
2025-06-24 20:23
【總結(jié)】范文范例參考三角恒等變換專題講解教學(xué)目標(biāo):1、能利用單位圓中的三角函數(shù)線推導(dǎo)出的正弦、余弦、正切的誘導(dǎo)公式;2、理解同角三角函數(shù)的基本關(guān)系式:;3、可熟練運用三角函數(shù)見的基本關(guān)系式解決各種問題。教學(xué)重難點:可熟練運用三角函數(shù)見的基本關(guān)系式解決各種問題【基礎(chǔ)知識】一、同角的三大關(guān)系:①倒數(shù)關(guān)系tan?cot=1
2025-04-16 12:49
【總結(jié)】設(shè)計:高一年級數(shù)學(xué)備課組授課教師:李洪偉1、降冪擴(kuò)角公式3、輔助角公式22cos1cos)3(22cos1sin)2(2sin21cossin)1(22????????????2、升冪縮角公式1cos2sin21sincos2cos
2025-07-26 08:55
【總結(jié)】 優(yōu)勝教育內(nèi)部資料張敬敬必修4三角函數(shù)三角恒等變換綜合練習(xí)一、選擇題(本大題共10小題,每小題3分,共30分,在每小題給出的四個選項中,只有一項是最符合題目要求的.)1.為終邊上一點,則()A、 B、C、 D、2.下列函數(shù)中,以為周期且在區(qū)間上為增函數(shù)的函數(shù)是(
2025-03-25 02:03
【總結(jié)】1.兩角和與差的三角函數(shù);;。2.二倍角公式;;。3.三角函數(shù)式的化簡常用方法:①直接應(yīng)用公式進(jìn)行降次、消項;②切割化弦,異名化同名,異角化同角;③三角公式的逆用等。(2)化簡要求:①能求出值的應(yīng)求出值;②使三角函數(shù)種數(shù)盡量少;③使項數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開方數(shù)不含三角函數(shù)。(1)降冪公式;;。(2)輔助角公式,。
2025-03-24 05:42
【總結(jié)】第三章《三角恒等變換》測試題(1)第Ⅰ卷(選擇題共60分)一、選擇題(本大題共12小題,每小題5分,共60分)1.設(shè),,,則,,大小關(guān)系() A.B.C.D.,若,則一定為().A.等邊三角形 B.直角三角形 C.銳角三角形 D.鈍角三角形3.等于()A.0 B. C.1 D.().A.
2025-03-25 06:51
【總結(jié)】..三角函數(shù)與三角恒等變換(A)一、填空題(本大題共14小題,每題5分,,請把答案寫在指定位置上)1.半徑是r,圓心角是α(弧度)的扇形的面積為________.2.若,則tan(π+α)=________.3.若α是第四象限的角,則π-α是第________象限的角.4.適合的實數(shù)m的取值范圍是_________.5.
2025-08-04 22:59
【總結(jié)】第六節(jié)簡單的三角恒等變換考綱點擊能運用兩角和與差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式進(jìn)行簡單的恒等變換(包括導(dǎo)出積化和差、和差化積、半角公式,但對這三組公式不要求記憶).熱點提示恒等變換,進(jìn)而考查三角函數(shù)的圖象和性質(zhì)是高考的熱點內(nèi)容.、向量為載體考查恒等變形能力以及運用正、余弦定理判定
2024-11-10 07:28
【總結(jié)】新課標(biāo)高中一輪總復(fù)習(xí)理數(shù)理數(shù)第四單元三角函數(shù)與平面向量第22講簡單的三角恒等變換能運用同角三角函數(shù)的基本關(guān)系、誘導(dǎo)公式、兩角和與差的三角公式進(jìn)行簡單的三角恒等變換.△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,則△ABC是()A
2024-11-21 01:05
【總結(jié)】年級高一學(xué)科數(shù)學(xué)內(nèi)容標(biāo)題簡單的三角函數(shù)恒等變換編稿老師褚哲一、學(xué)習(xí)目標(biāo):1.了解積化和差、和差化積的推導(dǎo)過程,能初步運用公式進(jìn)行和、積互化.2.能應(yīng)用公式進(jìn)行三角函數(shù)的求值、化簡、證明.二、重點、難點:重點:三角函數(shù)的積化和差與和差化積公式,能正確運用此公式進(jìn)行簡單的三角函數(shù)式的化簡、求值和恒等式的證明.難點:公式的靈活應(yīng)
2025-06-26 09:28
【總結(jié)】《三角恒等變換練習(xí)題》一、選擇題(本大題共6小題,每小題5分,滿分30分)1.已知,,則()A.B.C.D.2.函數(shù)的最小正周期是()A.B.C.D.3.在△ABC中,,則△ABC為()A.銳角三角形B.直角三角形C.鈍角三角形D.