freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

大學(xué)高等數(shù)學(xué)教材-文庫吧

2025-03-20 04:00 本頁面


【正文】 算規(guī)則前面已經(jīng)學(xué)習(xí)了數(shù)列極限的運(yùn)算規(guī)則,我們知道數(shù)列可作為一類特殊的函數(shù),故函數(shù)極限的運(yùn)算規(guī)則與數(shù)列極限的運(yùn)算規(guī)則相似。⑴、函數(shù)極限的運(yùn)算規(guī)則 若已知x→x0(或x→∞)時(shí),.則: 推論: 在求函數(shù)的極限時(shí),利用上述規(guī)則就可把一個(gè)復(fù)雜的函數(shù)化為若干個(gè)簡單的函數(shù)來求極限。例題:求解答:例題:求此題如果像上題那樣求解,像這種情況怎么辦呢?下面我們把它解出來。解答:注:通過此例題我們可以發(fā)現(xiàn):當(dāng)分式的分子和分母都沒有極限時(shí)就不能運(yùn)用商的極限的運(yùn)算規(guī)則了,應(yīng)先把分式的分子分母轉(zhuǎn)化為存在極限的情形,然后運(yùn)用規(guī)則求之。函數(shù)極限的存在準(zhǔn)則學(xué)習(xí)函數(shù)極限的存在準(zhǔn)則之前,我們先來學(xué)習(xí)一下左、右的概念。 我們先來看一個(gè)例子:例:符號(hào)函數(shù)為對于這個(gè)分段函數(shù),、右極限的概念。定義:如果x僅從左側(cè)(x<x0)趨近x0時(shí),函數(shù)與常量A無限接近,:如果x僅從右側(cè)(x>x0)趨近x0時(shí),函數(shù)與常量A無限接近,:注:只有當(dāng)x→x0時(shí),函數(shù)的左、右極限存在且相等,方稱在x→x0時(shí)有極限函數(shù)極限的存在準(zhǔn)則 準(zhǔn)則一:對于點(diǎn)x0的某一鄰域內(nèi)的一切x,x0點(diǎn)本身可以除外(或絕對值大于某一正數(shù)的一切x)有≤≤,且,那末存在,且等于A注:此準(zhǔn)則也就是夾逼準(zhǔn)則.準(zhǔn)則二:單調(diào)有界的函數(shù)必有極限.注:有極限的函數(shù)不一定單調(diào)有界兩個(gè)重要的極限 一:注:其中e為無理數(shù),它的值為:e=...二:注:在此我們對這兩個(gè)重要極限不加以證明.注:我們要牢記這兩個(gè)重要極限,在今后的解題中會(huì)經(jīng)常用到它們.例題:求解答:令,則x=2t,因?yàn)閤→∞,故t→∞,則注:解此類型的題時(shí),一定要注意代換后的變量的趨向情況,象x→∞時(shí),若用t代換1/x,則t→0.無窮大量和無窮小量無窮大量我們先來看一個(gè)例子:已知函數(shù),當(dāng)x→0時(shí),可知,我們把這種情況稱為趨向無窮大。為此我們可定義如下:設(shè)有函數(shù)y=,在x=x0的去心鄰域內(nèi)有定義,對于任意給定的正數(shù)N(一個(gè)任意大的數(shù)),總可找到正數(shù)δ,當(dāng)時(shí),成立,則稱函數(shù)當(dāng)時(shí)為無窮大量。記為:(表示為無窮大量,實(shí)際它是沒有極限的)同樣我們可以給出當(dāng)x→∞時(shí),無限趨大的定義:設(shè)有函數(shù)y=,當(dāng)x充分大時(shí)有定義,對于任意給定的正數(shù)N(一個(gè)任意大的數(shù)),總可以找到正數(shù)M,當(dāng)時(shí),成立,則稱函數(shù)當(dāng)x→∞時(shí)是無窮大量,記為:無窮小量以零為極限的變量稱為無窮小量。定義:設(shè)有函數(shù),對于任意給定的正數(shù)ε(不論它多么小),總存在正數(shù)δ(或正數(shù)M),使得對于適合不等式(或)的一切x,所對應(yīng)的函數(shù)值滿足不等式,則稱函數(shù)當(dāng)(或x→∞)時(shí) 為無窮小量.記作:(或)注意:無窮大量與無窮小量都是一個(gè)變化不定的量,不是常量,只有0可作為無窮小量的唯一常量。無窮大量與無窮小量的區(qū)別是:前者無界,后者有界,前者發(fā)散,.關(guān)于無窮小量的兩個(gè)定理定理一:如果函數(shù)在(或x→∞)時(shí)有極限A,則差是當(dāng)(或x→∞)時(shí)的無窮小量,反之亦成立。定理二:無窮小量的有利運(yùn)算定理a):有限個(gè)無窮小量的代數(shù)和仍是無窮小量; b):有限個(gè)無窮小量的積仍是無窮小量;c):常數(shù)與無窮小量的積也是無窮小量.無窮小量的比較通過前面的學(xué)習(xí)我們已經(jīng)知道,兩個(gè)無窮小量的和、?好!接下來我們就來解決這個(gè)問題,這就是我們要學(xué)的兩個(gè)無窮小量的比較。定義:設(shè)α,β都是時(shí)的無窮小量,且β在x0的去心領(lǐng)域內(nèi)不為零,a):如果,則稱α是β的高階無窮小或β是α的低階無窮?。籦):如果,則稱α和β是同階無窮??;c):如果,則稱α和β是等價(jià)無窮小,記作:α∽β(α與β等價(jià))例:因?yàn)?,所以?dāng)x→0時(shí),x與3x是同階無窮??;因?yàn)?,所以?dāng)x→0時(shí),x2是3x的高階無窮小;因?yàn)?,所以?dāng)x→0時(shí),sinx與x是等價(jià)無窮小。等價(jià)無窮小的性質(zhì)設(shè),且存在,則.注:這個(gè)性質(zhì)表明:求兩個(gè)無窮小之比的極限時(shí),分子及分母都可用等價(jià)無窮小來代替,因此我們可以利用這個(gè)性質(zhì)來簡化求極限問題。例題: 解答:當(dāng)x→0時(shí),sinax∽ax,tanbx∽bx,故:例題: 解答:注:注:從這個(gè)例題中我們可以發(fā)現(xiàn),作無窮小變換時(shí),要代換式中的某一項(xiàng),不能只代換某個(gè)因子。函數(shù)的一重要性質(zhì)——連續(xù)性在自然界中有許多現(xiàn)象,如氣溫的變化,就是函數(shù)的連續(xù)性在定義函數(shù)的連續(xù)性之前我們先來學(xué)習(xí)一個(gè)概念——增量設(shè)變量x從它的一個(gè)初值x1變到終值x2,終值與初值的差x2x1就叫做變量x的增量,記為:△x即:△x=x2x1 增量△x可正可負(fù).我們再來看一個(gè)例子:函數(shù)在點(diǎn)x0的鄰域內(nèi)有定義,當(dāng)自變量x在領(lǐng)域內(nèi)從x0變到x0+△x時(shí),函數(shù)y相應(yīng)地從變到,其對應(yīng)的增量為:這個(gè)關(guān)系式的幾何解釋如下圖:現(xiàn)在我們可對連續(xù)性的概念這樣描述:如果當(dāng)△x趨向于零時(shí),函數(shù)y對應(yīng)的增量△y也趨向于零,即:,那末就稱函數(shù)在點(diǎn)x0處連續(xù)。函數(shù)連續(xù)性的定義:設(shè)函數(shù)在點(diǎn)x0的某個(gè)鄰域內(nèi)有定義,如果有稱函數(shù)在點(diǎn)x0處連續(xù),且稱x0為函數(shù)的的連續(xù)點(diǎn).下面我們結(jié)合著函數(shù)左、右極限的概念再來學(xué)習(xí)一下函數(shù)左、右連續(xù)的概念:設(shè)函數(shù)在區(qū)間(a,b]內(nèi)有定義,如果左極限存在且等于,即:=,[a,b)內(nèi)有定義,如果右極限存在且等于,即:=,那末我們就稱函數(shù)在點(diǎn)a右連續(xù).一個(gè)函數(shù)在開區(qū)間(a,b)內(nèi)每點(diǎn)連續(xù),則為在(a,b)連續(xù),若又在a點(diǎn)右連續(xù),b點(diǎn)左連續(xù),則在閉區(qū)間[a,b]連續(xù),如果在整個(gè)定義域內(nèi)連續(xù),則稱為連續(xù)函數(shù)。注:一個(gè)函數(shù)若在定義域內(nèi)某一點(diǎn)左、右都連續(xù),則稱函數(shù)在此點(diǎn)連續(xù),否則在此點(diǎn)不連續(xù).注:連續(xù)函數(shù)圖形是一條連續(xù)而不間斷的曲線。通過上面的學(xué)習(xí)我們已經(jīng)知道函數(shù)的連續(xù)性了,同時(shí)我們可以想到若函數(shù)在某一點(diǎn)要是不連續(xù)會(huì)出現(xiàn)什么情形呢?接著我們就來學(xué)習(xí)這個(gè)問題:函數(shù)的間斷點(diǎn)函數(shù)的間斷點(diǎn)定義:我們把不滿足函數(shù)連續(xù)性的點(diǎn)稱之為間斷點(diǎn). 它包括三種情形:a):在x0無定義;b):在x→x0時(shí)無極限;c):在x→x0時(shí)有極限但不等于;下面我們通過例題來學(xué)習(xí)一下間斷點(diǎn)的類型:例1: 正切函數(shù)在處沒有定義,所以點(diǎn)是函數(shù)的間斷點(diǎn),因,我們就稱為函數(shù)的無窮間斷點(diǎn);例2:函數(shù)在點(diǎn)x=0處沒有定義;故當(dāng)x→0時(shí),函數(shù)值在1與+1之間變動(dòng)無限多次,我們就稱點(diǎn)x=0叫做函數(shù)的振蕩間斷點(diǎn); 例3:函數(shù)當(dāng)x→0時(shí),左極限,右極限,從這我們可以看出函數(shù)左、右極限雖然都存在,但不相等,故函數(shù)在點(diǎn)x=0是不存在極限。我們還可以發(fā)現(xiàn)在點(diǎn)x=0時(shí),函數(shù)值產(chǎn)生跳躍現(xiàn)象,為此我們把這種間斷點(diǎn)稱為跳躍間斷點(diǎn);我們把上述三種間斷點(diǎn)用幾何圖形表示出來如下:間斷點(diǎn)的分類我們通常把間斷點(diǎn)分成兩類:如果x0是函數(shù)的間斷點(diǎn),且其左、右極限都存在,我們把x0稱為函數(shù)的第一類間斷點(diǎn);不是第一類間斷點(diǎn)的任何間斷點(diǎn),稱為第二類間斷點(diǎn).可去間斷點(diǎn)若x0是函數(shù)的間斷點(diǎn),但極限存在,那末x0是函數(shù)的第一類間斷點(diǎn)。此時(shí)函數(shù)不連續(xù)原因是:不存在或者是存在但≠。我們令,則可使函數(shù)在點(diǎn)x0處連續(xù),故這種間斷點(diǎn)x0稱為可去間斷點(diǎn)。連續(xù)函數(shù)的性質(zhì)及初等函數(shù)的連續(xù)性連續(xù)函數(shù)的性質(zhì)函數(shù)的和、積、商的連續(xù)性我們通過函數(shù)在某點(diǎn)連續(xù)的定義和極限的四則運(yùn)算法則,可得出以下結(jié)論:a):有限個(gè)在某點(diǎn)連續(xù)的函數(shù)的和是一個(gè)在該點(diǎn)連續(xù)的函數(shù);b):有限個(gè)在某點(diǎn)連續(xù)的函數(shù)的乘積是一個(gè)在該點(diǎn)連續(xù)的函數(shù);c):兩個(gè)在某點(diǎn)連續(xù)的函數(shù)的商是一個(gè)在該點(diǎn)連續(xù)的函數(shù)(分母在該點(diǎn)不為零);反函數(shù)的連續(xù)性若函數(shù)在某區(qū)間上單調(diào)增(或單調(diào)減)且連續(xù),那末它的反函數(shù)也在對應(yīng)的區(qū)間上單調(diào)增(單調(diào)減)且連續(xù)例:函數(shù)在閉區(qū)間上單調(diào)增且連續(xù),故它的反函數(shù)在閉區(qū)間[1,1]上也是單調(diào)增且連續(xù)的。復(fù)合函數(shù)的連續(xù)性設(shè)函數(shù)當(dāng)x→x0時(shí)的極限存在且等于a,即:.而函數(shù)在點(diǎn)u=a連續(xù),那末復(fù)合函數(shù)當(dāng)x→:例題:求解答:注:函數(shù)可看作與復(fù)合而成,且函數(shù)在點(diǎn)u=e連續(xù),因此可得出上述結(jié)論。設(shè)函數(shù)在點(diǎn)x=x0連續(xù),且,而函數(shù)在點(diǎn)u=u0連續(xù),那末復(fù)合函數(shù)在點(diǎn)x=x0也是連續(xù)的初等函數(shù)的連續(xù)性通過前面我們所學(xué)的概念和性質(zhì),我們可得出以下結(jié)論:基本初等函數(shù)在它們的定義域內(nèi)都是連續(xù)的;一切初等函數(shù)在其定義域內(nèi)也都是連續(xù)的.閉區(qū)間上連續(xù)函數(shù)的性質(zhì)閉區(qū)間上的連續(xù)函數(shù)則是在其連續(xù)區(qū)間的左端點(diǎn)右連續(xù),下面我們來學(xué)習(xí)一下:最大值最小值定理:在閉區(qū)間上連續(xù)的函數(shù)一定有最大值和最小值。(在此不作證明) 例:函數(shù)y=sinx在閉區(qū)間[0,2π]上連續(xù),則在點(diǎn)x=π/2處,它的函數(shù)值為1,且大于閉區(qū)間[0,2π]上其它各點(diǎn)出的函數(shù)值;則在點(diǎn)x=3π/2處,它的函數(shù)值為1,且小于閉區(qū)間[0,2π]上其它各點(diǎn)出的函數(shù)值。介值定理在閉區(qū)間上連續(xù)的函數(shù)一定取得介于區(qū)間兩端點(diǎn)的函數(shù)值間的任何值。即:,μ在α、β之間,則在[a,b]間一定有一個(gè)ξ,使 推論:在閉區(qū)間連續(xù)的函數(shù)必取得介于最大值最小值之間的任何值。二、導(dǎo)數(shù)與微分導(dǎo)數(shù)的概念在學(xué)習(xí)到數(shù)的概念之前,我們先來討論一下物理學(xué)中變速直線運(yùn)動(dòng)的瞬時(shí)速度的問題。例:設(shè)一質(zhì)點(diǎn)沿x軸運(yùn)動(dòng)時(shí),其位置x是時(shí)間t的函數(shù),求質(zhì)點(diǎn)在t0的瞬時(shí)速度?我們知道時(shí)間從t0有增量△t時(shí),質(zhì)點(diǎn)的位置有增量 ,這就是質(zhì)點(diǎn)在時(shí)間段△t的位移。因此,在此段時(shí)間內(nèi)質(zhì)點(diǎn)的平均速度為:.若質(zhì)點(diǎn)是勻速運(yùn)動(dòng)的則這就是在t0的瞬時(shí)速度,若質(zhì)點(diǎn)是非勻速直線運(yùn)動(dòng),則這還不是質(zhì)點(diǎn)在t0時(shí)的瞬時(shí)速度。我們認(rèn)為當(dāng)時(shí)間段△t無限地接近于0時(shí),此平均速度會(huì)無限地接近于質(zhì)點(diǎn)t0時(shí)的瞬時(shí)速度,即:質(zhì)點(diǎn)在t0時(shí)的瞬時(shí)速度=為此就產(chǎn)生了導(dǎo)數(shù)的定義,如下:導(dǎo)數(shù)的定義:設(shè)函數(shù)在點(diǎn)x0的某一鄰域內(nèi)有定義,當(dāng)自變量x在x0處有增量△x(x+△x也在該鄰域內(nèi))時(shí),相應(yīng)地函數(shù)有增量,若△y與△x之比當(dāng)△x→0時(shí)極限存在,則稱這個(gè)極限值為在x0處的導(dǎo)數(shù)。記為:還可記為:,函數(shù)在點(diǎn)x0處存在導(dǎo)數(shù)簡稱函數(shù)在點(diǎn)x0處可導(dǎo),否則不可導(dǎo)。若函數(shù)在區(qū)間(a,b)內(nèi)每一點(diǎn)都可導(dǎo),就稱函數(shù)在區(qū)間(a,b)內(nèi)可導(dǎo)。這時(shí)函數(shù)對于區(qū)間(a,b)內(nèi)的每一個(gè)確定的x值,都對應(yīng)著一個(gè)確定的導(dǎo)數(shù),這就構(gòu)成一個(gè)新的函數(shù),我們就稱這個(gè)函數(shù)為原來函數(shù)的導(dǎo)函數(shù)。 注:導(dǎo)數(shù)也就是差商的極限左、右導(dǎo)數(shù)前面我們有了左、右極限的概念,導(dǎo)數(shù)是差商的極限,因此我們可以給出左、右導(dǎo)數(shù)的概念。若極限存在,我們就稱它為函數(shù)在x=x0處的左導(dǎo)數(shù)。若極限存在,我們就稱它為函數(shù)在x=x0處的右導(dǎo)數(shù)。注:函數(shù)在x0處的左右導(dǎo)數(shù)存在且相等是函數(shù)在x0處的可導(dǎo)的充分必要條件函數(shù)的和、差求導(dǎo)法則函數(shù)的和差求導(dǎo)法則 法則:兩個(gè)可導(dǎo)函數(shù)的和(差)的導(dǎo)數(shù)等于這兩個(gè)函數(shù)的導(dǎo)數(shù)的和(差).用公式可寫為:。其中u、v為可導(dǎo)函數(shù)。例題:已知,求解答:例題:已知,求解答:函數(shù)的積商求導(dǎo)法則常數(shù)與函數(shù)的積的求導(dǎo)法則法則:在求一個(gè)常數(shù)與一個(gè)可導(dǎo)函數(shù)的乘積的導(dǎo)數(shù)時(shí),常數(shù)因子可以提到求導(dǎo)記號(hào)外面去。用公式可寫成: 例題:已知,求解答:函數(shù)的積的求導(dǎo)法則法則:兩個(gè)可導(dǎo)函數(shù)乘積的導(dǎo)數(shù)等于第一個(gè)因子的導(dǎo)數(shù)乘第二個(gè)因子,加上第一個(gè)因子乘第二個(gè)因子的導(dǎo)數(shù)。用公式可寫成:例題:已知,求解答:注:若是三個(gè)函數(shù)相乘,則先把其中的兩個(gè)看成一項(xiàng)。函數(shù)的商的求導(dǎo)法則法則:兩個(gè)可導(dǎo)函數(shù)之商的導(dǎo)數(shù)等于分子的導(dǎo)數(shù)與分母導(dǎo)數(shù)乘積減去分母導(dǎo)數(shù)與分子導(dǎo)數(shù)的乘積,在除以分母導(dǎo)數(shù)的平方。用公式可寫成: 例題:已知,求解答:復(fù)合函數(shù)的求導(dǎo)法則在學(xué)習(xí)此法則之前我們先來看一個(gè)例子!例題:求=?解答:由于,故 這個(gè)解答正確嗎?這個(gè)解答是錯(cuò)誤的,正確的解答應(yīng)該如下:我們發(fā)生錯(cuò)誤的原因是是對自變量x求導(dǎo),而不是對2x求導(dǎo)。下面我們給出復(fù)合函數(shù)的求導(dǎo)法則復(fù)合函數(shù)的求導(dǎo)規(guī)則規(guī)則:兩個(gè)可導(dǎo)函數(shù)復(fù)合而成的復(fù)合函數(shù)的導(dǎo)數(shù)等于函數(shù)對中間變量的導(dǎo)數(shù)乘上中間變量對自變量的導(dǎo)數(shù)。用公式表示為:,其中u為中間變量例題:已知,求解答:設(shè),則可分解為,因此注:在以后解題中,我們可以中間步驟省去。例題:已知,求 解答:反函數(shù)求導(dǎo)法則根據(jù)反函數(shù)的定義,函數(shù)為單調(diào)連續(xù)函數(shù),則它的反函數(shù),,如下(我們以定理的形式給出):定理:若是單調(diào)連續(xù)的,且,則它的反函數(shù)在點(diǎn)x可導(dǎo),且有: 注:通過此定理我們可以發(fā)現(xiàn):反函數(shù)的導(dǎo)數(shù)等于原函數(shù)導(dǎo)數(shù)的倒數(shù)。注:這里的反函數(shù)是以y為自變量的,我們沒有對它作記號(hào)變換。即: 是對y求導(dǎo),是對x求導(dǎo)例題:求的導(dǎo)數(shù).解答:此函數(shù)的反函數(shù)為,故則:例題:求的導(dǎo)數(shù).解答:此函數(shù)的反函數(shù)為,故則:高階導(dǎo)數(shù)我們知道,在物理學(xué)上變速直線運(yùn)動(dòng)的速度v(t)是位置函數(shù)s(t)對時(shí)間t的導(dǎo)數(shù),即: ,而加速度a又是速度v對時(shí)間t的變化率,即速度v對時(shí)間t的導(dǎo)數(shù): ,或。這種導(dǎo)數(shù)的導(dǎo)數(shù)叫做s對t的二階導(dǎo)數(shù)。下面我們給出它的數(shù)學(xué)定義:定義:,記作或,即:,二階導(dǎo)數(shù)的導(dǎo)數(shù),叫做三階導(dǎo)數(shù),三階導(dǎo)數(shù)的導(dǎo)數(shù),叫做四階導(dǎo)數(shù),…,一般地(n1)階導(dǎo)數(shù)的導(dǎo)數(shù)叫做n階導(dǎo)數(shù).分別記作:,…,或,…,二階及二階以上的導(dǎo)數(shù)統(tǒng)稱高階導(dǎo)數(shù)。由此可見,求高階導(dǎo)數(shù)就是多次接連地求導(dǎo),所以,在求高階導(dǎo)數(shù)時(shí)可運(yùn)用前面所學(xué)的求導(dǎo)方法。例題:已知,求 解答:因?yàn)?a,故=0例題:求對數(shù)函數(shù)的n階導(dǎo)數(shù)。解答:,,一般地,可得隱函數(shù)及其求導(dǎo)法則我們知道用解析法表示函數(shù),像y=sinx,y=1+3x等,.一般地,如果方程F(x,y)=0中,令x在某一區(qū)間內(nèi)任取一值時(shí),相應(yīng)地總有滿足此方程的y值存在,則我們就說方程F(x,y)=,叫做隱函數(shù)的顯化。注:有些隱函數(shù)并不是很容易化為顯函數(shù)的,那么在求其導(dǎo)數(shù)時(shí)該如何呢?下面讓我們來解決這個(gè)問題!隱函數(shù)的求導(dǎo)若已知F(x,y)=0,求時(shí),一般按下列步驟進(jìn)行求解:a):若方程F(x,y)=0,能化為的形式,則用前面我們所學(xué)的方法進(jìn)行求導(dǎo);b):若方程F(x,y)=0,不能化為的形式,則是方程兩邊對x進(jìn)行求導(dǎo),并把y看成x的函數(shù),用復(fù)合函數(shù)求導(dǎo)法則進(jìn)行。例題:已知,求解答:此方程不易顯化, ,故= 注:我們對隱函數(shù)兩邊對x進(jìn)行求導(dǎo)時(shí),一定要把變量y看成x的函數(shù),然后對其利用復(fù)合函數(shù)求導(dǎo)法則進(jìn)行求導(dǎo)。例題:求隱函數(shù),在x=0處的導(dǎo)數(shù)解答:兩邊對x求導(dǎo),故,當(dāng)x=0時(shí),y=。有些函數(shù)在求導(dǎo)數(shù)時(shí),若對其直接求導(dǎo)有時(shí)很不方便,像對某些冪函數(shù)進(jìn)行求導(dǎo)時(shí),有沒有一種比較直觀的方法呢?下面我們再來學(xué)習(xí)一種求導(dǎo)的方法:對數(shù)求導(dǎo)法對數(shù)求導(dǎo)法對數(shù)求導(dǎo)的法則:根據(jù)隱函數(shù)求導(dǎo)的方法,對某一函數(shù)先取函數(shù)的自然對數(shù),然后在求導(dǎo)。注:此方法特別適用于冪函數(shù)的求導(dǎo)問題。例題:已知x>0,求此題若對其直接求導(dǎo)比較麻煩,我們可以先對其兩邊取自然對數(shù),然后再把它看成隱函數(shù)進(jìn)行求導(dǎo),就比較簡便些。如下解答:先兩邊取對數(shù): ,把其看成隱函數(shù),再兩邊求導(dǎo)因?yàn)椋岳}:已知,求此題可用復(fù)合函數(shù)求導(dǎo)法則進(jìn)行求導(dǎo),但是比較麻煩,下面我們利用對數(shù)求導(dǎo)法進(jìn)行求導(dǎo)解答:先兩邊取對數(shù)再兩邊求導(dǎo)因?yàn)?,所以函?shù)的微分學(xué)習(xí)函數(shù)的微分之前,我們先來分析一個(gè)具體問題:一塊正方形金屬薄片受溫度變化的影響時(shí),其邊長由x0變到了x0+△x,則此薄片的面積改變了多少?解答:設(shè)此薄片的邊長為x,面積為A,則A是x的函數(shù): 薄片受溫度變化的影響面積的改變量,可以看成是當(dāng)自變量x從x0取的增量△x時(shí),函數(shù)A相應(yīng)的增量△A,即:。從上式我們可以看出,△A分成兩部分,第一部分是△x的線性函數(shù),即下圖中紅色部分;第二部分即圖中的黑色部分,當(dāng)△x→0時(shí),它是△x的高階無窮小,表示為:由此我們可以發(fā)現(xiàn),如果邊長變化的很小時(shí),面積的改變量可以近似的用地一部分來代替。下面我們給出微分的數(shù)學(xué)定義:函數(shù)微分的定義:設(shè)函數(shù)在某區(qū)間內(nèi)有定義,x0及x0+△x在這區(qū)間內(nèi),若函數(shù)的增量可表示為,其中A是不依賴于△x的常數(shù),是△x的高階無窮小,則稱函數(shù)在點(diǎn)x0可微的。叫做函數(shù)在點(diǎn)x0相應(yīng)于自變量增量△x的微分,記作dy,即:=。通過上面的學(xué)習(xí)我們知道:微分是自變量改變量△x的線性函數(shù),dy與△y的差是關(guān)于△x的高階無窮小量,我們把dy稱作△y的線性主部。于是我們又得出:當(dāng)△x→0時(shí),△y≈: ,現(xiàn)在我們可以發(fā)現(xiàn),它不僅表示導(dǎo)數(shù)的記號(hào),而且還可以表示兩個(gè)微分的比值(把△x看成dx,即:定義自變量的增量等于自變量的微分),還可表示為:由此我們得出:若函數(shù)在某區(qū)間上可導(dǎo),則它在此區(qū)間上一定可微,反之亦成立。微分形式不變性 什么是微分形式不邊形呢? 設(shè),則復(fù)合函數(shù)的微分為: , 由于,故我們可以把復(fù)合函數(shù)的微分寫成 由此可見,不論u是自變量還是中間變量,的微分dy總可以用與du的乘積來表示, 我們把這一性質(zhì)稱為微分形式不變性。 例題:已知,求dy 解答:把2x+1看成中間變量u,根據(jù)微分形式不變性,則16
點(diǎn)擊復(fù)制文檔內(nèi)容
數(shù)學(xué)相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1