【總結(jié)】218.111.1常微分方程教學(xué)大綱(OrdinaryDifferentialEquations)學(xué)分數(shù)3周學(xué)時3+1:常微分方程(一學(xué)期課程)一學(xué)期:4*18.:(1)課
2025-08-22 20:43
【總結(jié)】習(xí)題一一、單項選擇題.1.微分方程的階數(shù)是().A.1B.2C.3D.52.克萊羅方程的一般形式是().A.B.C.D.3.下列方程中為全微分方程的是().A.B.C.
2025-03-25 01:12
【總結(jié)】目錄上頁下頁返回結(jié)束§一階隱式微分方程一階顯式微分方程),(yxfy??一階隱式微分方程0),,(??yyxF()能從上式中解出,y?就可以化成顯式方程。例1求解微分方程.0)()(2????xydxdyyxdxdy目錄上頁下頁返回
2025-10-10 17:11
【總結(jié)】習(xí)題2-1判斷下列方程是否為恰當方程,并且對恰當方程求解:1.0)12()13(2????dyxdxx解:13),(2??xyxP,12),(??xyxQ,則0???yP,2???xQ,所以xQyP?????即原方程不是恰當方程.2.0)2()2(????dyyx
2025-01-10 04:15
【總結(jié)】《常微分方程》教學(xué)大綱一、?計劃學(xué)時:72課時二、?適用專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)(師范類)(本、??疲?、信息與計算科學(xué)(本)三、???課程性質(zhì)與任務(wù):常微分方程是高等師范院校數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)及信息與計算專業(yè)的基礎(chǔ)課之一。本課程主要學(xué)習(xí)各種基本類型的常微分方程解的性質(zhì)、方程的解法及其某些應(yīng)用。通過該課程的學(xué)習(xí),使學(xué)生正確理解常微分
2025-04-16 23:04
【總結(jié)】數(shù)學(xué)與計算科學(xué)學(xué)院實驗報告實驗項目名稱Eular方法求解一階常微分方程數(shù)值解所屬課程名稱偏微分方程數(shù)值解實驗類型驗證性實驗日期20
2025-07-24 00:27
【總結(jié)】《常微分方程》自學(xué)指導(dǎo)書一、課程編碼、適用專業(yè)及教材課程編碼:110621211總學(xué)時:90學(xué)時,其中面授學(xué)時:28學(xué)時,自學(xué)學(xué)時:62學(xué)時。適用專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)專業(yè)(函授本科)使用教材:王高雄等編,常微分方程,高等教育出版社(第二版),1983.9。二、課程性質(zhì)常微分方程科程是高等院校數(shù)學(xué)專業(yè)在數(shù)學(xué)分析和高等代數(shù)基礎(chǔ)上繼續(xù)深入和發(fā)展的一門
2025-09-25 15:52
【總結(jié)】常微分方程課程教學(xué)大綱(OrdinaryDifferentialEquation)課程性質(zhì):學(xué)科基礎(chǔ)課適用專業(yè):信息與計算科學(xué)先修課程:數(shù)學(xué)分析、高等代數(shù)、普通物理后續(xù)課程:微分方程數(shù)值解總學(xué)分:3教學(xué)目的與要求:微分方程是數(shù)學(xué)理論聯(lián)系實際的重要渠道之一,也是其它數(shù)學(xué)分支的一個綜合應(yīng)用場所,我們所研究的方程多數(shù)是由其它學(xué)科(如物理、氣象、生態(tài)學(xué)、經(jīng)濟學(xué))推
2025-08-22 20:44
【總結(jié)】第十二章常微分方程(A)一、是非題1.任意微分方程都有通解。()2.微分方程的通解中包含了它所有的解。()3.函數(shù)是微分方程的解。()4.函數(shù)是微分方程的解。()5.微分方程的通解是(為任意常數(shù))。()6.是一階線性微分方程。()7.不是一階線性微分方程。()8.的特征方程為。()
2025-06-24 15:07
【總結(jié)】一、填空題(每空2分,共16分)。1、方程滿足解的存在唯一性定理條件的區(qū)域是 xoy平面 ?。?.方程組的任何一個解的圖象是n+1維空間中的一條積分曲線.3.連續(xù)是保證方程初值唯一的充分條件.4.方程組的奇點的類型是中心5.方程的通解是6.變量可分離方程的積分因子是7.二階線性齊次微分方程的兩個解
2025-06-24 15:00
【總結(jié)】02412—0202412—03=是方程組x=x,x=,在任何不包含原點的區(qū)間a上的基解矩陣。解:令的第一列為(t)=,這時(t)==(t)故(t)是一個解。同樣如果以(t)表示第二列,我們有(t)==(t)這樣(t)也是一個解。因此是解矩陣。又因為det=-t故是基解矩陣。=A(t)x()其中A(t)是區(qū)間a上的連續(xù)nn矩陣,它的元素為a(t),
【總結(jié)】1第十二章常微分方程習(xí)題課:.一階微分方程一)()(yxdxdy?????????dxxydy)()(?????????xyfdxdydxduxudxdyuxyxyu????,,則令),(ufdxduxu???,)(uufdxdux??.)(????????xdxuufdu2
2025-01-08 13:24
【總結(jié)】第三章一階微分方程的解的存在定理需解決的問題?,)(),(1000的解是否存在初值問題???????yxyyxfdxdy?,,)(),(2000是否唯一的解是存在若初值問題???????yxyyxfdxdy§解的存在唯一性定理
2025-01-20 04:55
【總結(jié)】 〔供中醫(yī)藥類專業(yè)用〕 第一頁,共六十三頁。 第六章骨折 第四節(jié)軀干骨折 第二頁,共六十三頁。 脊柱骨折 第三頁,共六十三頁。 解剖概要 ?椎體 ?椎弓 ?椎孔 ?椎間...
2025-09-26 21:00
【總結(jié)】第三章一階微分方程解的存在定理[教學(xué)目標]1.理解解的存在唯一性定理的條件、結(jié)論及證明思路,掌握逐次逼近法,熟練近似解的誤差估計式。2.了解解的延拓定理及延拓條件。3.理解解對初值的連續(xù)性、可微性定理的條件和結(jié)論。[教學(xué)重難點]解的存在唯一性定理的證明,解對初值的連續(xù)性、可微性定理的證明。[教學(xué)方法]講授,實踐。[教學(xué)時間]12學(xué)時[教學(xué)內(nèi)容]
2025-06-29 12:44