【總結】幾何要想取得好成績,幾何公式一定要爛熟于胸。幾何公式是做好幾何題的根基,因此同學們一定要在幾何公式上多下功夫。本文總結了初中幾何公式140條。初中幾何公式:線1過兩點有且只有一條直線 2兩點之間線段最短 3同角或等角的補角相等 4同角或等角的余角相等 5過一點有且只有一條直線和已知直線垂直 6直線外一點與直線上各
2025-07-22 09:50
【總結】......高一數(shù)學競賽班二試講義第1講平面幾何中的26個定理班級姓名一、知識點金1.梅涅勞斯定理:若直線不經(jīng)過的頂點,并且與的三邊或它們的延長線分別
2025-06-19 22:03
【總結】第一篇:金河鎮(zhèn)冬令營活動實施方案【修訂】 金河鎮(zhèn)中心校德育冬令營活動實施方案 為了進一步推進我鎮(zhèn)學校德育工作,根據(jù)《縣教體局關于建立學校德育工作長效機制的意見》和《縣德育冬令營評比活動的通知》要求...
2025-11-07 02:07
【總結】經(jīng)典難題(一)1、已知:如圖,O是半圓的圓心,C、E是圓上的兩點,CD⊥AB,EF⊥AB,EG⊥CO.求證:CD=GF.AFGCEBOD2、已知:如圖,P是正方形ABCD內一點,∠PAD=∠PDA=150.APCDB求證:△PBC是正三角形.D2C2
2025-03-25 01:21
【總結】法庫縣東湖小學足球冬令營活動安全預案為了認真貫徹落實足球冬令營活動有關安全保障的要求,為加強學校管理,增強自我防護意識,培養(yǎng)學生的自我防護能力,防范活動時安全事故的發(fā)生,維護正常的活動秩序,保證活動順利開展,避免事故發(fā)生,共建和諧校園,促進學生安全、健康成長,特制訂本預案。一、成立東湖小學足球冬令營活動安全領導小組組長:
2025-10-25 00:00
【總結】冬令營的心得體會[合集5篇]第一篇:冬令營的心得體會一轉眼冬令營就結束了,每天都是收獲滿滿的,也帶給我了許多的第一次:第一次看4D電影;第一次體驗科學實驗;第一次近距離接觸海洋動物??帶隊的呂老師對我的照顧很細心,也很周到,衣食住行上都會為我著想,我也因此順利完成了這難忘的科技體驗之旅。下面由來給大家分享參加冬令營心得,歡
2025-04-07 19:32
【總結】初中數(shù)學平面幾何知識定理1過兩點有且只有一條直線2兩點之間線段最短3同角或等角的補角相等4同角或等角的余角相等5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位角相等,兩
2025-06-07 16:31
【總結】八年級平面幾何難題集錦,已知等邊△ABC,P在AC延長線上一點,以PA為邊作等邊△APE,EC延長線交BP于M,連接AM,求證:(1)BP=CE;(2)試證明:EM-PM=AM.,△ACM,△CBN都是等邊三角形,線段AN,MC交于點E,BM,CN交于點F。求證:(1)AN=MB.(2)將△ACM繞點C按逆時針方向旋轉一定角度,如圖②所示,其
2025-03-27 00:38
【總結】......平面幾何的17個著名定理1.若不給自己設限,則人生中就沒有限制你發(fā)揮的藩籬。2.若不是心寬似海,哪有人生風平浪靜。在紛雜的塵世里,為自己留下一片純靜的心靈空間,
2025-06-19 23:35
【總結】,,平分交于,如圖,,垂足為,,為垂足。是中點,是中點。若的外接圓與的另一個交點為。求證:、、、四點共圓。.證明:作AQ延長線交BC于N,則Q為AN中點,又M為AC中點,所以QM//BC.所以 .同理,.所以QM=PM.又因為共圓.所以.所以.所以P、H、B、C四點共圓..故 .結合,知為HP中垂
2025-06-19 23:26
【總結】平面幾何四個重要定理四個重要定理:梅涅勞斯(Menelaus)定理(梅氏線)△ABC的三邊BC、CA、AB或其延長線上有點P、Q、R,則P、Q、R共線的充要條件是。塞瓦(Ceva)定理(塞瓦點)△ABC的三邊BC、CA、AB上有點P、Q、R,則AP、BQ、CR共點的充要條件是。托勒密(Ptolemy)定理四邊形的兩對邊乘積之和等于其對角線乘積的
2025-06-19 22:55
【總結】(高中)平面幾何基礎知識(基本定理、基本性質)1.勾股定理(畢達哥拉斯定理)(廣義勾股定理)(1)銳角對邊的平方,等于其他兩邊之平方和,減去這兩邊中的一邊和另一邊在這邊上的射影乘積的兩倍. (2)鈍角對邊的平方等于其他兩邊的平方和,加上這兩邊中的一邊與另一邊在這邊上的射影乘積的兩倍.2.射影定理(歐幾里得定理)3.中線定理(巴布斯定理)設△ABC的邊BC的中點為P,則有;中
2025-06-16 21:17
【總結】教材分析本節(jié)內容是數(shù)學必修4第二章平面向量的第一課時.本節(jié)課是在學習了向量的線性運算及向量數(shù)量積的基礎上進行的,是對前面學習內容的延續(xù)與拓展;本節(jié)的目的是讓學生加深對向量的認識,更好地體會向量這個工具的優(yōu)越性。對于向量方法,就思路而言,向量方法與平面幾何中的解析法是一致的,不同的只是用“向量和向量運算”來代替“數(shù)和數(shù)的運算”.同時本節(jié)課也是對向量相關知識的進一步鞏固、應用
2025-08-18 16:34
【總結】初中平面幾何相關公式直線1過兩點有且只有一條直線2兩點之間線段最短5過一點有且只有一條直線和已知直線垂直6直線外一點與直線上各點連接的所有線段中,垂線段最短角3同角或等角的補角相等4同角或等角的余角相等平行7平行公理經(jīng)過直線外一點,有且只有一條直線與這條直線平行8如果兩條直線都和第三條直線平行,這兩條直線也互相平行9同位
2025-08-17 08:47
【總結】初中幾何證明練習題1.如圖,在△ABC中,BF⊥AC,CG⊥AD,F(xiàn)、G是垂足,D、E分別是BC、FG的中點,求證:DE⊥FG證明:連接DG、DF∵∠BGC=90°,BD=CD∴DG=BC同理DF=BC∴DG=DF又GE=FE∴DE⊥FG2.如圖,AE∥BC,D是BC的中點,ED交AC于Q,ED的延長線交AB的延長線于P,求證:PD·Q
2025-03-24 12:35