【總結(jié)】3.3幾個三角恒等式變換是數(shù)學的重要工具,也是數(shù)學學習的主要對象之一,三角主要有以下三個基本的恒等變換:(1)代換;(2)公式的逆向變換和多向變換;(3)引入輔助角的變換.前面已利用誘導公式進行過簡易的恒等變換,本節(jié)中將綜合運用和(差)角公式、倍角公式進行更加豐富的三角恒等變換.1.sin2α2=_______
2025-11-26 03:24
【總結(jié)】三角函數(shù)與平面向量專題二22sinsincos1tantancot1.cossin()sincoscossincos()coscossinsintantantan().1t12antan????????????
2025-11-02 08:50
【總結(jié)】設計:高一年級數(shù)學備課組授課教師:李洪偉1、降冪擴角公式3、輔助角公式22cos1cos)3(22cos1sin)2(2sin21cossin)1(22????????????2、升冪縮角公式1cos2sin21sincos2cos
2025-07-26 08:55
【總結(jié)】新課標高中一輪總復習理數(shù)理數(shù)第四單元三角函數(shù)與平面向量第22講簡單的三角恒等變換能運用同角三角函數(shù)的基本關(guān)系、誘導公式、兩角和與差的三角公式進行簡單的三角恒等變換.△ABC中,已知sin(A-B)cosB+cos(A-B)sinB≥1,則△ABC是()A
2025-11-12 01:05
【總結(jié)】三角恒等變換專題復習(一)2012-8-7一、基本內(nèi)容串講1.兩角和與差的正弦、余弦和正切公式如下:;;對其變形:tanα+tanβ=tan(α+β)(1-tanαtanβ),有時應用該公式比較方便。2.二倍角的正弦、余弦、正切公式如下:...要熟悉余弦“倍角”與“二次”的關(guān)系(升角
2025-03-24 05:44
【總結(jié)】......三角恒等變換大題=7-4sinxcosx+4cos2x-4cos4x的最大值和最小值.(x)=.(1)求f的值;(2
【總結(jié)】第六節(jié)簡單的三角恒等變換考綱點擊能運用兩角和與差的正弦、余弦、正切公式以及二倍角的正弦、余弦和正切公式進行簡單的恒等變換(包括導出積化和差、和差化積、半角公式,但對這三組公式不要求記憶).熱點提示恒等變換,進而考查三角函數(shù)的圖象和性質(zhì)是高考的熱點內(nèi)容.、向量為載體考查恒等變形能力以及運用正、余弦定理判定
2025-11-01 07:28
【總結(jié)】......§兩角和與差的三角函數(shù)【復習目標】1.掌握兩角和與差的三角函數(shù)公式,掌握二倍角公式;2.能正確地運用三角函數(shù)的有關(guān)公式進行三角函數(shù)式的求值.3.能正確地運用三角公式進行三角函數(shù)式
2025-06-24 20:23
【總結(jié)】三角函數(shù)恒等變換一、三角函數(shù)的誘導公式1、下列各角的終邊與角α的終邊的關(guān)系角2kπ+α(k∈Z)π+α-α圖示與α角終邊的關(guān)系相同關(guān)于原點對稱關(guān)于x軸對稱角π-α-α+α圖示與α角終邊的關(guān)系關(guān)于y軸對稱關(guān)于直線y=x對稱2、六組誘
2025-05-16 07:40
【總結(jié)】1.兩角和與差的三角函數(shù);;。2.二倍角公式;;。3.三角函數(shù)式的化簡常用方法:①直接應用公式進行降次、消項;②切割化弦,異名化同名,異角化同角;③三角公式的逆用等。(2)化簡要求:①能求出值的應求出值;②使三角函數(shù)種數(shù)盡量少;③使項數(shù)盡量少;④盡量使分母不含三角函數(shù);⑤盡量使被開方數(shù)不含三角函數(shù)。(1)降冪公式;;。(2)輔助角公式,。
【總結(jié)】1、同角三角函數(shù)的基本關(guān)系知識回顧??αcosαsin221Z)π2π(αtanαcosαsinα????kk,2、和(差)角的正弦、余弦、正切公式知識回顧??β)sin(α???sincoscossin?α??β)cos(
2025-10-07 20:26
【總結(jié)】第六節(jié)簡單的三角恒等變換基礎(chǔ)梳理1、用于三角恒等變換的公式主要有:(1)____________________________,運用它們可實現(xiàn)弦函數(shù)之間、弦函數(shù)與切函數(shù)之間的互化,其主要功能是變名;(2)________,運用它們可實現(xiàn)與一個銳角有關(guān)的不同角之間的轉(zhuǎn)化,其主要功能是變角;(3)_____________________,它
2025-11-03 01:24
【總結(jié)】范文范例參考第4講簡單的三角恒等變換★知識梳理1.升降冪公式:;2.同角正余弦化積公式,其中;=★重難點突破:掌握利用三角恒等變換處理三角式化簡,求值與證明等問題。:確定三角變換的方向及三角公式的合理運用.:通過審題分析已知條件和待求結(jié)論之間角的差異,建立聯(lián)系,使問題獲解。(1)三角變換的基本思
2025-06-26 19:50
【總結(jié)】......三角恒等變換練習題一一、選擇題1.(2014年太原模擬)已知,則( )A.B.C.D.2.若,且在第二象限內(nèi),則為( )A.
【總結(jié)】三角函數(shù)的恒等變形與求值寶應中學高三數(shù)學文科備課組一、要點掃描?1、了解用向量的數(shù)量積推導出兩角差的余弦公式的過程。?2、能利用已知條件,正確合理地運用三角恒等變形公式進行三角函數(shù)式的化簡、求值及恒等式證明。二、課前熱身?1.若,則
2025-11-03 01:26