【總結(jié)】線性代數(shù)(同濟第5版)復(fù)習(xí)要點以矩陣為工具,以線性方程組問題為主線第一章行列式基本結(jié)論1.行列式的性質(zhì)(1)互換行列式的兩行,行列式變號.(2)行列式中某一行的所有元素的公因子可以提到行列式符號的外面.(3)把行列式的某一行的各元素乘以同一數(shù)然后加到另一行對應(yīng)的元素上去,行列式不變.2.行列式按行(按列)展開定理3行列式等于它的任一行的各元素與其對
2025-04-17 08:53
【總結(jié)】答疑題庫——線性代數(shù)與解析幾何(二)例1試證,正交向量組一定是線性無關(guān)的。證,設(shè)s???,,,21?是正交向量組,于是有??????0,,0,???iijiji????設(shè)有數(shù)skkk,,,21?,使02211????sskkk????,兩邊與i?作內(nèi)積得??
2025-08-21 12:55
【總結(jié)】第七節(jié)克萊姆法則???????????????????nnnnnnnnnnbxaxaxabxaxaxabxaxaxa???????????????22112222212111212111設(shè)線性方程組,,,,21不全為零若常數(shù)項nbbb?則稱此方程組為非齊次線性方程
2024-10-04 19:42
【總結(jié)】上頁下頁返回第二節(jié)矩陣的計算一、矩陣的加法二、數(shù)與矩陣相乘三、矩陣與矩陣相乘四、矩陣轉(zhuǎn)置五、方陣的行列式六、共軛矩陣七、矩陣的應(yīng)用上頁
2025-08-05 10:13
【總結(jié)】第矩陣的運算一.矩陣的加法二.數(shù)與矩陣的乘法三.矩陣與矩陣的乘法四.矩陣的其它運算五.小結(jié)思考題1、定義?????????????????????????mnmnmmmmnnnnbababababababababaB
2025-08-05 10:12
【總結(jié)】1班級:時間:年月日;星期教學(xué)目的掌握特征值與特征向量的概念、求法以及性質(zhì)。掌握相似矩陣的概念和性質(zhì),理解方陣A對角化的充要條件,會用實對稱矩陣對角化的基本方法將簡單對稱矩陣對角化作業(yè)重點相似矩陣與對稱矩陣對角化練習(xí)冊第43頁-46頁第5題
2024-12-08 01:39
【總結(jié)】答疑題庫——線性代數(shù)與解析幾何(一)1、計算n階行列式000100002000010?????????nnDn??分析由定義知,n階行列式共有n!項,每一項的一般形式為????nnppppppraaa,212121
【總結(jié)】線性代數(shù)??行列式、矩陣、n維向量、線性方程組、標準形與二次型,其中行列式與矩陣是其基本理論基礎(chǔ)。Leibniz在十七世紀就有了行列式的概念。Vandermonde是第一個對行列式理論做出連貫的邏輯闡述的人。Cayley被公認為矩陣論的創(chuàng)立者。線性代數(shù)前言?矩陣論在二
2025-08-07 10:51
【總結(jié)】2022~2022學(xué)年第二學(xué)期試卷(B)一、填空題(每小題4分,共20分)1.設(shè)n階方陣的行列式1,3A?則1*13.()15AA?????????n)2(3?nnA?mmB?????????????11100BA2.設(shè)與均可逆,
2025-01-17 07:32
【總結(jié)】線性代數(shù)復(fù)習(xí)提綱:一:關(guān)于計算方面的內(nèi)容。1.用矩陣消元法求解線性方程組AX=b(分b=0與b≠0兩種情況)的全部解。例題見P97—例3和P93—例如。2.將向量β表示成向量組·····的線性組合。例題見P64—例6
2024-10-04 16:40
【總結(jié)】習(xí)題設(shè)行列式,則第四行各元素余子式之和的值為.2235007022220403???D111100
2025-01-17 13:25
【總結(jié)】第二章行列式行列式在線性代數(shù)中是一個有用的工具,利用它不僅可以表述n階矩陣為可逆矩陣的條件;而且可導(dǎo)出逆矩陣公式及著名的克拉默法則。本章在二三階行列式定義的基礎(chǔ)上,歸納出一般n階行列式的定義,然后討論行列式的基本性質(zhì)及其應(yīng)用。用消元法解二元線性方程組一、二階行列式的引入方程組的解為由方程組的四
2025-01-19 10:01
【總結(jié)】行列式的性質(zhì)?行列式的性質(zhì)?余子式與代數(shù)余子式?行列式按行(列)展開法則一、行列式的性質(zhì)性質(zhì)1行列式與它的轉(zhuǎn)置行列式相等.行列式稱為行列式的轉(zhuǎn)置行列式.TDD記nnaaa?2211???nnaaa2112??21
2025-01-19 19:05
【總結(jié)】線性代數(shù)教學(xué)改革李尚志教授中國科學(xué)技術(shù)大學(xué)數(shù)學(xué)系空間為體,矩陣為用?研究對象幾何:線性空間(向量)?研究工具代數(shù):矩陣運算?向量(問題)modeling?矩陣語言描述?矩陣運算解決?
2025-07-21 04:22
【總結(jié)】向量組的秩向量組的極大線性無關(guān)組與秩歐氏空間向量空間的基維數(shù)坐標基變換與坐標變換北京科技大學(xué)《線性代數(shù)》課程組012:,,,rA???線性無關(guān)向量組,定義簡稱為極大無關(guān)組或最大無關(guān)組.12,,,r???若向量組A的一個部分組A0:滿足(1)
2025-02-21 12:43