【總結】高等數(shù)學教案第九章多元函數(shù)微分法及其應用第五節(jié)隱函數(shù)的求導法則一、一個方程的情形隱函數(shù)存在定理1設函數(shù)在點的某一鄰域內具有連續(xù)偏導數(shù),,,則方程在點的某一鄰域內恒能唯一確定一個連續(xù)且具有連續(xù)導數(shù)的函數(shù),它滿足條件,并有.說明:1)定理證明略,現(xiàn)僅給
2025-08-05 18:49
【總結】隱函數(shù)的求導法則一、一個方程的情形二、方程組的情形一、一個方程的情形0),(.1?yxF定義:).(0),(,,0),(,xyyyxFyxyxFyx???隱函數(shù)在該區(qū)間內確定了一個稱方程此時值與之對應相應地總有唯一的時取某一區(qū)間的任一值在一定條件下,當,滿足方
2025-01-20 05:31
【總結】一、一個方程的情形二、方程組的情形三、小結思考題第五節(jié)隱函數(shù)的求導公式0),(.1?yxF一、一個方程的情形隱函數(shù)存在定理1設函數(shù)),(yxF在點),(00yxP的某一鄰域內具有連續(xù)的偏導數(shù),且0),(00?yxF,0),(00?yxFy,則方程0),(?yxF在點),
2025-08-11 16:41
【總結】上一頁下一頁返回首頁湘潭大學數(shù)學與計算科學學院1由參數(shù)方程所確定的函數(shù)的求導法則一、求導法則二、典型例題三、小結上一頁下一頁返回首頁湘潭大學數(shù)學與計算科學學院2(),().xtyxyt???????若參數(shù)方程確定與由參數(shù)方程間的所確
2025-07-24 03:18
【總結】11(3)解:212sec2yxxx????y=(1sin)sin(cos)cosxxxxx????sincoscos2xxxx???3(3)解一:??y=sinsincosxxxx???3(3)解二:22si
2025-07-24 06:07
【總結】第五節(jié)隱函數(shù)的求導法則一、一個方程的情形二、方程組的情形三、由方程組確定的反函數(shù)的求導公式0),(.1?yxF隱函數(shù)存在定理1設函數(shù)在點的某一鄰域內具有連續(xù)的偏導數(shù),且則方程在點的某一鄰域內恒能唯一確定一個單值連續(xù)且具有連續(xù)導數(shù)的函數(shù))(xf
2024-10-17 12:16
【總結】第四節(jié)、隱函數(shù)的導數(shù)、由參數(shù)方程確定的函數(shù)的導數(shù)隱函數(shù)及由參數(shù)方程所確定的函數(shù)的導數(shù)第二章、隱函數(shù)的導數(shù)若由方程可確定y是x的函數(shù),由表示的函數(shù),稱為顯函數(shù).例如,可確定顯函數(shù)可確定y是x的函數(shù),但此隱函數(shù)不能顯化.函數(shù)為隱函數(shù).則稱此
2025-07-24 04:26
【總結】一、隱函數(shù)的導數(shù)定義:.)(稱為隱函數(shù)由方程所確定的函數(shù)xyy?.)(形式稱為顯函數(shù)xfy?0),(?yxF)(xfy?隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復合函數(shù)求導法則直接對方程兩邊求導.例1.,00????xyxdxdydxdyy
2025-07-24 06:04
【總結】§求導法則與導數(shù)公式1.0)(??C;2.1)(??????xx)(R??;3.xxcos)(sin??;4.xxsin)(cos???;5.axxaln1)(log??;xx1)(ln??;
2025-07-24 17:11
【總結】第三節(jié)一、隱函數(shù)的導數(shù)二、由參數(shù)方程所確定的函數(shù)的導數(shù)隱函數(shù)和由參數(shù)方程所確定的函數(shù)的導數(shù)第二章一、隱函數(shù)的導數(shù)1.定義注1°所確定是由若0),()()(???yxFDxxyy;則)(0)](,[DxxyxF??的隱函數(shù),中可由若隱函數(shù)0),()()(???yxFDxxyy.
2025-07-24 06:08
【總結】一、和、差、積、商的求導法則二、反函數(shù)的求導法則三、復合函數(shù)的求導法則第二節(jié)求導法則與基本初等函數(shù)求導公式四、基本求導法則與求導公式五、小結思考題一、函數(shù)的和、差、積、商的求導法則定理1并且處也可導在點除分母不為零外們的和、差、積、商則它處可導在點如
2025-08-21 12:38
【總結】一、積分上限函數(shù)及其導數(shù)二、積分上限函數(shù)求導法則三、微積分基本公式第二節(jié)微積分基本定理設在區(qū)間上連續(xù),且,則存在,如積分上限在上任意變動,那么對于每一取定的值,均有唯一的數(shù)與之對應,所以是一個定義在
2024-09-29 17:46
【總結】復合函數(shù)的導數(shù)一、復習與引入:1.函數(shù)的導數(shù)的定義與幾何意義...y=(3x-2)2的導數(shù),那么我們可以把平方式展開,利用導數(shù)的四則運算法則求導.然后能否用其它的辦法求導呢?又如我們知道函數(shù)y=1/x2的導數(shù)是=-2/x3,那么函數(shù)y=1/(3x-2)2的導數(shù)又是什么呢?為了解決上面
2024-11-03 19:25
【總結】DDY整理由方程所確定的與間的函數(shù)關系稱為隱函數(shù)。隱函數(shù)求導法:兩邊對求導(是的函數(shù))得到一個關于的方程,解出即可。例20求由方程所確定的隱函數(shù)的導數(shù)。解方程兩邊對求導例21求由方程所確定的隱函數(shù)的導數(shù)并求。解方程兩邊對求導?當時,由方程解出例22設求。解原方程為等號兩邊
2025-07-22 20:24
【總結】下頁定義:若由方程F(x,y)=0可確定y是x的函數(shù),則稱此函數(shù)為隱函數(shù).0),(?yxF()yfx??隱函數(shù)的顯化問題:隱函數(shù)不易顯化或不能顯化如何求導?隱函數(shù)求導法則:用復合函數(shù)求導法則直接對方程兩邊求導.一、隱函數(shù)的導數(shù)由y=f(x)表示的函數(shù),稱為顯函數(shù).例.,00???
2025-07-24 09:57