freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

歷年中考數(shù)學(xué)易錯題匯編-二次函數(shù)練習(xí)題附答案-文庫吧

2025-04-01 23:30 本頁面


【正文】 ∴,∴,∴A1的橫坐標(biāo)是1;當(dāng)OC1在拋物線上時(shí),∴,∴A1的橫坐標(biāo)是;【點(diǎn)睛】本題是二次函數(shù)的綜合題,考查了待定系數(shù)法求二次函數(shù)的解析式,軸對稱最短路線問題,等腰三角形的性質(zhì)等;分類討論思想的運(yùn)用是本題的關(guān)鍵.4.已知,點(diǎn)為二次函數(shù)圖象的頂點(diǎn),直線分別交軸正半軸,軸于點(diǎn).(1)如圖1,若二次函數(shù)圖象也經(jīng)過點(diǎn),試求出該二次函數(shù)解析式,并求出的值.(2)如圖2,點(diǎn)坐標(biāo)為,點(diǎn)在內(nèi),若點(diǎn),都在二次函數(shù)圖象上,試比較與的大小.【答案】(1),;(2)①當(dāng)時(shí),;②當(dāng)時(shí),;③當(dāng)時(shí),【解析】【分析】(1)根據(jù)一次函數(shù)表達(dá)式求出B點(diǎn)坐標(biāo),然后根據(jù)B點(diǎn)在拋物線上,求出b值,從而得到二次函數(shù)表達(dá)式,再根據(jù)二次函數(shù)表達(dá)式求出A點(diǎn)的坐標(biāo),最后代入一次函數(shù)求出m值.(2)根據(jù)解方程組,可得頂點(diǎn)M的縱坐標(biāo)的范圍,根據(jù)二次函數(shù)的性質(zhì),可得答案.【詳解】(1)如圖1,∵直線與軸交于點(diǎn)為,∴點(diǎn)坐標(biāo)為又∵在拋物線上,∴,解得∴二次函數(shù)的表達(dá)式為∴當(dāng)時(shí),得,∴代入得,∴(2)如圖2,根據(jù)題意,拋物線的頂點(diǎn)為,即點(diǎn)始終在直線上,∵直線與直線交于點(diǎn),與軸交于點(diǎn),而直線表達(dá)式為解方程組,得∴點(diǎn),∵點(diǎn)在內(nèi),∴當(dāng)點(diǎn)關(guān)于拋物線對稱軸(直線)對稱時(shí),∴且二次函數(shù)圖象的開口向下,頂點(diǎn)在直線上綜上:①當(dāng)時(shí),;②當(dāng)時(shí),;③當(dāng)時(shí),.【點(diǎn)睛】本題考查二次函數(shù)與一次函數(shù)的綜合應(yīng)用,難度系數(shù)大同學(xué)們需要認(rèn)真分析即可.5.已知點(diǎn)A(﹣1,2)、B(3,6)在拋物線y=ax2+bx上(1)求拋物線的解析式;(2)如圖1,點(diǎn)F的坐標(biāo)為(0,m)(m>2),直線AF交拋物線于另一點(diǎn)G,過點(diǎn)G作x軸的垂線,垂足為H.設(shè)拋物線與x軸的正半軸交于點(diǎn)E,連接FH、AE,求證:FH∥AE;(3)如圖2,直線AB分別交x軸、y軸于C、D兩點(diǎn).點(diǎn)P從點(diǎn)C出發(fā),沿射線CD方向勻速運(yùn)動,速度為每秒個(gè)單位長度;同時(shí)點(diǎn)Q從原點(diǎn)O出發(fā),沿x軸正方向勻速運(yùn)動,速度為每秒1個(gè)單位長度.點(diǎn)M是直線PQ與拋物線的一個(gè)交點(diǎn),當(dāng)運(yùn)動到t秒時(shí),QM=2PM,直接寫出t的值.【答案】(1)拋物線的解析式為y=x2﹣x;(2)證明見解析;(3)當(dāng)運(yùn)動時(shí)間為或秒時(shí),QM=2PM.【解析】【分析】(1)(1)A,B的坐標(biāo)代入拋物線y=ax2+bx中確定解析式;(2)把A點(diǎn)坐標(biāo)代入所設(shè)的AF的解析式,與拋物線的解析式構(gòu)成方程組,解得G點(diǎn)坐標(biāo),再通過證明三角形相似,得到同位角相等,兩直線平行;(3)具體見詳解.【詳解】.解:(1)將點(diǎn)A(﹣1,2)、B(3,6)代入中, ,解得: ,∴拋物線的解析式為y=x2﹣x. (2)證明:設(shè)直線AF的解析式為y=kx+m,將點(diǎn)A(﹣1,2)代入y=kx+m中,即﹣k+m=2,∴k=m﹣2,∴直線AF的解析式為y=(m﹣2)x+m.聯(lián)立直線AF和拋物線解析式成方程組, ,解得: 或 ,∴點(diǎn)G的坐標(biāo)為(m,m2﹣m).∵GH⊥x軸,∴點(diǎn)H的坐標(biāo)為(m,0).∵拋物線的解析式為y=x2﹣x=x(x﹣1),∴點(diǎn)E的坐標(biāo)為(1,0).過點(diǎn)A作AA′⊥x軸,垂足為點(diǎn)A′,如圖1所示.∵點(diǎn)A(﹣1,2),∴A′(﹣1,0),∴AE=2,AA′=2.∴ =1, = =1,∴= ,∵∠AA′E=∠FOH,∴△AA′E∽△FOH,∴∠AEA′=∠FHO,∴FH∥AE. (3)設(shè)直線AB的解析式為y=k0x+b0,將A(﹣1,2)、B(3,6)代入y=k0x+b0中,得 ,解得: ,∴直線AB的解析式為y=x+3,當(dāng)運(yùn)動時(shí)間為t秒時(shí),點(diǎn)P的坐標(biāo)為(t﹣3,t),點(diǎn)Q的坐標(biāo)為(t,0).當(dāng)點(diǎn)M在線段PQ上時(shí),過點(diǎn)P作PP′⊥x軸于點(diǎn)P′,過點(diǎn)M作MM′⊥x軸于點(diǎn)M′,則△PQP′∽△MQM′,如圖2所示,∵QM=2PM,∴ =,∴QM′=QP39。=2,MM′=PP39。=t,∴點(diǎn)M的坐標(biāo)為(t﹣2, t).又∵點(diǎn)M在拋物線y=x2﹣x上,∴ t=(t﹣2)2﹣(t﹣2),解得:t=;當(dāng)點(diǎn)M在線段QP的延長線上時(shí),同理可得出點(diǎn)M的坐標(biāo)為(t﹣6,2t),∵點(diǎn)M在拋物線y=x2﹣x上,∴2t=(t﹣6)2﹣(t﹣6),解得:t=.綜上所述:當(dāng)運(yùn)動時(shí)間秒 或 時(shí),QM=2PM. 【點(diǎn)睛】本題考查二次函數(shù)綜合運(yùn)用,綜合能力是解題關(guān)鍵.6.如圖,已知直線y=﹣2x+4分別交x軸、y軸于點(diǎn)A、B.拋物線過A、B兩點(diǎn),點(diǎn)P是線段AB上一動點(diǎn),過點(diǎn)P作PC⊥x軸于點(diǎn)C,交拋物線于點(diǎn)D.(1)如圖1,設(shè)拋物線頂點(diǎn)為M,且M的坐標(biāo)是(,),對稱軸交AB于點(diǎn)N.①求拋物線的解析式;②是否存在點(diǎn)P,使四邊形MNPD為菱形?并說明理由;(2)是否存在這樣的點(diǎn)D,使得四邊形BOAD的面積最大?若存在,求出此時(shí)點(diǎn)D的坐標(biāo);若不存在,請說明理由.【答案】(1)①y=﹣2x2+2x+4;;②不存在點(diǎn)P,使四邊形MNPD為菱形;;(2)存在,點(diǎn)D的坐標(biāo)是(1,4).【解析】【分析】(1)①由一次函數(shù)圖象上點(diǎn)的坐標(biāo)特征求得點(diǎn)B的坐標(biāo),設(shè)拋物線解析式為y=a,把點(diǎn)B的坐標(biāo)代入求得a的值即可;②不存在點(diǎn)P,使四邊形MNPD為菱形.設(shè)點(diǎn)P的坐標(biāo)是(m,﹣2m+4),則D(m,﹣2m2+2m+4),根據(jù)題意知PD∥MN,所以當(dāng)PD=MN時(shí),四邊形MNPD為平行四邊形,根據(jù)該等量關(guān)系列出方程﹣2m2+4m=,通過解方程求得m的值,易得點(diǎn)N、P的坐標(biāo),然后推知PN=MN是否成立即可;(2)設(shè)點(diǎn)D的坐標(biāo)是(n,﹣2n2+2n+4),P(n,﹣2n+4).根據(jù)S四邊形BOAD=S△BOA+S△ABD=4+S△ABD,則當(dāng)S△ABD取最大值時(shí),S四邊形BOAD最大.根據(jù)三角形的面積公式得到函數(shù)S△ABD=﹣2(n﹣1)2+2.由二次函數(shù)的性質(zhì)求得最值.【詳解】解:①如圖1,∵頂點(diǎn)M的坐標(biāo)是,∴設(shè)拋物線解析式為y=(a≠0).∵直線y=﹣2x+4交y軸于點(diǎn)B,∴點(diǎn)B的坐標(biāo)是(0,4).又∵點(diǎn)B在該拋物線上,∴=4,解得a=﹣2.故該拋物線的解析式為:y=
點(diǎn)擊復(fù)制文檔內(nèi)容
環(huán)評公示相關(guān)推薦
文庫吧 www.dybbs8.com
備案圖鄂ICP備17016276號-1