freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

用放縮法證明與數(shù)列和有關的不等式(已改無錯字)

2024-10-27 22 本頁面
  

【正文】 證錯誤!未找到引用源。;證明第三問時,充分借助(2)的結(jié)論可知錯誤!未找到引用源。,又錯誤!未找到引用源。,所以錯誤!未找到引用源??傻缅e誤!未找到引用源。,因此構(gòu)成數(shù)集錯誤!未找到引用源。,經(jīng)檢驗錯誤!未找到引用源。具有性質(zhì)錯誤!未找到引用源。,進而求出錯誤!未找到引用源。的最小值為錯誤!未找到引用源。.8.記等差數(shù)列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。.(1)求證:數(shù)列錯誤!未找到引用源。是等差數(shù)列;(2)若 錯誤!未找到引用源。,對任意錯誤!未找到引用源。,均有錯誤!未找到引用源。是公差為錯誤!未找到引用源。的等差數(shù)列,求使錯誤!未找到引用源。為整數(shù)的正整數(shù)錯誤!未找到引用源。的取值集合;(3)記錯誤!未找到引用源。,求證: 錯誤!未找到引用源。.【答案】(1)見解析(2)錯誤!未找到引用源。(3)見解析解:(1)設等差數(shù)列錯誤!未找到引用源。的公差為錯誤!未找到引用源。,則錯誤!未找到引用源。,從而錯誤!未找到引用源。,所以當錯誤!未找到引用源。時,錯誤!未找到引用源。,即數(shù)列錯誤!未找到引用源。是等差數(shù)列.(2)因為的任意的錯誤!未找到引用源。都是公差為錯誤!未找到引用源。,的等差數(shù)列,所以錯誤!未找到引用源。是公差為錯誤!未找到引用源。,的等差數(shù)列,又錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。,顯然,錯誤!未找到引用源。滿足條件,當錯誤!未找到引用源。時,因為錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。不是整數(shù),綜上所述,正整數(shù)錯誤!未找到引用源。的取值集合為錯誤!未找到引用源。.(3)設等差數(shù)列錯誤!未找到引用源。的公差為錯誤!未找到引用源。,則錯誤!未找到引用源。,所以錯誤!未找到引用源。,即數(shù)列錯誤!未找到引用源。是公比大于錯誤!未找到引用源。,首項大于錯誤!未找到引用源。的等比數(shù)列,記公比為錯誤!未找到引用源。.以下證明: 錯誤!未找到引用源。,其中錯誤!未找到引用源。為正整數(shù),且錯誤!未找到引用源。,因為錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。,當錯誤!未找到引用源。時,錯誤!未找到引用源。,當錯誤!未找到引用源。時,因為錯誤!未找到引用源。為減函數(shù),錯誤!未找到引用源。,所以錯誤!未找到引用源。,所以錯誤!未找到引用源。,綜上,錯誤!未找到引用源。,其中錯誤!未找到引用源。錯誤!未找到引用源。錯誤!未找到引用源。,即錯誤!未找到引用源。.9.已知數(shù)列{an}的前n項和為Sn,數(shù)列{bn},{}滿足(n+1)bn=an+1錯誤!未找到引用源。,(n+2)=錯誤!未找到引用源。,其中n∈N*.(1)若數(shù)列{an}是公差為2的等差數(shù)列,求數(shù)列{}的通項公式;(2)若存在實數(shù)λ,使得對一切n∈N*,有bn≤λ≤,求證:數(shù)列{an}是等差數(shù)列. 【答案】(1)=1.(2).已知各項不為零的數(shù)列錯誤!未找到引用源。的前錯誤!未找到引用源。項和為錯誤!未找到引用源。,且錯誤!未找到引用源。,錯誤!未找到引用源。,錯誤!未找到引用源。.(1)若錯誤!未找到引用源。成等比數(shù)列,求實數(shù)錯誤!未找到引用源。的值;(2)若錯誤!未找到引用源。成等差數(shù)列,①求數(shù)列錯誤!未找到引用源。的通項公式; ②在錯誤!未找到引用源。與錯誤!未找到引用源。間插入錯誤!未找到引用源。個正數(shù),共同組成公比為錯誤!未找到引用源。的等比數(shù)列,若不等式錯誤!未找到引用源。對任意的錯誤!未找到引用源。恒成立,求實數(shù)錯誤!未找到引用源。的最大值.【答案】(1)錯誤!未找到引用源。(2)錯誤!未找到引用源。(3)錯誤!未找到引用源。(3)錯誤!未找到引用源。,在錯誤!未找到引用源。與錯誤!未找到引用源。間插入錯誤!未找到引用源。個正數(shù),組成公比為錯誤!未找到引用源。的等比數(shù)列,故有錯誤!未找到引用源。,即錯誤!未找到引用源。,第三篇:放縮法證明數(shù)列不等式放縮法證明不等式設數(shù)列{an}的前n項的和Sn=43an13180。2nn+1+3(n=1,2,3,L)n(Ⅰ)求首項a1與通項an;(Ⅱ)設Tn=an=42nn2Sn(n=1,2,3,L),證明:229。Tii=1解:易求Sn=Tn=(其中n為正整數(shù))nn432nan=n13180。180。2n+1+=(4n23n)180。2n+1+=(2n+11)(21)nSn(2n+11)(21)=1230。1246。180。231。nn+1247。2232。2121248。所以:229。i=1Ti=313230。1246。180。231。1n+1247。2232。2121248。2求證:(1)11+法1:數(shù)歸(兩邊都可以)法2:放縮裂項 法3:定積分放縮(2)22L+n206。N)++L+1n1n31n11n法1:放縮一:n(n1)=(n179。2)Sn=+++L+1n1n(1336++++52)+(15=1653++L+1n11n)=1+13361214001++1121400=1+23893600(11+24003600.放縮二:1n1n1=(n+1)(n1)=2n1n+1),(n179。2)Sn=54++L+1n(11+2)+111111111(++L++)22435n2nn1n+1+1111151115(+)+(+)=.223nn+142233放縮三:1n1n=(n+112)(n12)=(1n1n+12)=2(12n112n+1),(n179。1)Sn=++L+1n1+2(13++L+12n112n+1)=1+2(1312n+1)法2:數(shù)歸——加強命題:常用的放縮公式:1n(n+1)2n+n+11n+L+1n1n1n(n1)1n;n+n12nn+n+1;=nn+2n1;aba+mb+m(ba0,m0)1kk(k+1)(k1)1n+11k(k1)=249。1233。11*(k179。2,k206。N)234。2235。k(k1)k(k+1)1n+k163。n+kn1k!163。+1n+2+...+kn+11(k179。3)(k179。2);212n+1nk!k(k1)(k2)nan=例3:已知:1(n206。N+),求證:229。aii=1n2法1:均值不等式:即證++715n2+...+212n+1n1+n2也即:++715+...+212nn+1n1而:++715+...+212n+11179。n==法2:放縮后裂項求和an=21212n+1n1(=212(21nn)1=n+1=121(2n+1n1)(21)n=21nn+11)法3:數(shù)歸,但是直接去證是不行的,要轉(zhuǎn)化為一個加強命題4.定義數(shù)列如下:a1=2,an+1=anan+1,n206。N*證明:(1)對于n206。N恒有an+1an成立。2**(2)當n2且n206。N,有an+1=anan1La2a1+1成立。(3)120061a1+1a2+L+1a20061。解:(1)用數(shù)學歸納法易證。(2)由an+1=anan+1得:an+11=an(an1)\an1=an1(an11)……a21=a1(a11)以上各式兩邊分別相乘得:an+11=anan1La2a1(a11),又a1=2\an+1=anan1La2a1+1(3)要證不等式120061a1+1a2+L+1a20061,可先設法求和:1a1+1a2+L+a2006,再進行適當?shù)姆趴s。Qan+11=an(an1)\1an+111an1a1=1an11an\=1an11a21an+111a2006\++L+=(1a1111a211)+(1a211a31)+L+(1a200611a20071)=a11a200711=1a1a2La20061又a1a2La2006a12006=22006\11a1a2La200612006\原不等式得證。5.已知數(shù)列{an}中an=iinnn21,求證:229。ai(ai1)=1方法一:ai(ai1)=ni2121iii(21)(22)=ii1i1(21)(21)=i11121i.\229。i=1ai(ai1)(21)+(121121)+(121121)+L+(12n11121n)=3121n:ai(ai1)=ii(21)=i122+i122i122+i163。22ii1.(i179。2)n\229。i=1ai(ai1)2+++L+n1=2+(112)=3n1n1法3:數(shù)歸證\229。i=1ai(ai1)3121n3.(即轉(zhuǎn)化為證明加強命題)已知函數(shù)f(x)=ln(1+x)x,數(shù)列{an}滿足:a1=2,ln2+lnan+1=an+1an+f(an+1an).(1)求證:ln(1+x)163。x;(2)求數(shù)列{an}的通項公式;(3)求證不等式:a1+a2+L+ann+ln2ln(n+2). 解:(1)f(x)=ln(1+x)x,f39。(x)=11+x1=x1+x,當1x0時,f39。(x)0,即y=f(x)是單調(diào)遞增函數(shù);當x0時,f39。(x)0,即y=f(x)是單調(diào)遞減函數(shù).所以f39。(0)=0,即x=0是極大值點,也是最大值
點擊復制文檔內(nèi)容
環(huán)評公示相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1