【總結(jié)】江蘇省漣水縣第一中學(xué)高中數(shù)學(xué)第三章第2課瞬時(shí)變化率—導(dǎo)數(shù)(曲線上一點(diǎn)處切線)教學(xué)案蘇教版選修1-1班級(jí):高二()班姓名:____________教學(xué)目標(biāo):1.理解并掌握曲線在某一點(diǎn)處的切線的概念;2.理解并掌握曲線在一點(diǎn)處的切線的斜率的定義以及切線方程的求法;3.理解切線概念的實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)
2024-11-20 00:30
【總結(jié)】廣州市育才中學(xué)2021-09學(xué)年高二數(shù)學(xué)選修1-1單元檢測(cè)題導(dǎo)數(shù)及其應(yīng)用(A組:適合A,B類學(xué)校使用)時(shí)間:120分鐘滿分:150分命題人:李葉秀鄧軍民一、選擇題(每小題5分,共50分)1、設(shè))(xf是可導(dǎo)函數(shù),且?????????)(,2)()2(lim0000xfxxfxxfx則(
2024-12-01 09:33
【總結(jié)】計(jì)算導(dǎo)數(shù)學(xué)習(xí)目標(biāo):能夠用導(dǎo)數(shù)的定義求幾個(gè)常用初等函數(shù)的導(dǎo)數(shù)。一、自學(xué)、思考、練習(xí)憶一憶:1、函數(shù)在一點(diǎn)處導(dǎo)數(shù)的定義;2、導(dǎo)數(shù)的幾何意義;[3、導(dǎo)函數(shù)的定義;4、求函數(shù)的導(dǎo)數(shù)的步驟。二、參與學(xué)習(xí)試一試:1、你能推導(dǎo)下列函數(shù)的導(dǎo)數(shù)嗎?(1)()fxc?(2)()fxx?(
2024-12-05 01:49
【總結(jié)】知識(shí)歸納:導(dǎo)數(shù)的計(jì)算一、幾個(gè)常用函數(shù)的導(dǎo)數(shù)1C′=0(C為常數(shù))2(xn)′=nxn-1(n∈Q)3(sinx)′=cosx4(cosx)′=-sinx=C(C是常數(shù)),求y′.解:y=f(x)=C,y=f(x+Δx)-f(x)=C-C=0,xy??=0.Y′=C′=xy
2024-11-19 20:36
【總結(jié)】實(shí)際問(wèn)題中導(dǎo)數(shù)的意義一、學(xué)習(xí)要求:導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用二、學(xué)習(xí)目標(biāo)能運(yùn)用導(dǎo)數(shù)方法求解有關(guān)利潤(rùn)最大,用料最省,效率最高等最優(yōu)化問(wèn)題,體會(huì)導(dǎo)數(shù)在解決實(shí)際生活問(wèn)題中的作用。三、重點(diǎn)難點(diǎn)用導(dǎo)數(shù)方法解決實(shí)際生活中的問(wèn)題四、要點(diǎn)梳理解應(yīng)用題的基本程序是:讀題建模求解
2024-11-19 23:16
【總結(jié)】拓展資料:導(dǎo)數(shù)在證明恒等式中的應(yīng)用一、預(yù)備知識(shí)定理1若函數(shù)f(x)在區(qū)間I上可導(dǎo),且x∈I,有f′(x)=0,則x∈I,有f(x)=c(常數(shù)).證明在區(qū)間I上取定一點(diǎn)x0及x∈I.顯然,函數(shù)f(x)在[x0,x]或[x,x0]上滿足拉格朗日定理,有f(x)-f(x0)=f′(ξ)(x
【總結(jié)】廣州市育才中學(xué)2021-09學(xué)年高二數(shù)學(xué)選修1-1單元檢測(cè)題導(dǎo)數(shù)及其應(yīng)用(B組:適合C類及以下學(xué)校使用)時(shí)間:120分鐘滿分:150分命題人:李葉秀鄧軍民一、選擇題(每小題5分,共50分)1、已知函數(shù)f(x)=ax2+c,且(1)f?=2,則a的值為()A.0
2024-11-30 13:02
【總結(jié)】圖1導(dǎo)數(shù)在實(shí)際生活的實(shí)際應(yīng)用同步練習(xí)1.一個(gè)膨脹中的球形氣球,其體積的膨脹章恒為/s,則當(dāng)其半徑增至m時(shí),半徑的增長(zhǎng)率是________.2.將長(zhǎng)為a的鐵絲剪成兩段,各圍成長(zhǎng)與寬之比為2∶1及3∶2的矩形,那么這兩個(gè)矩形面積和的最小值為.3.如圖1,將邊
2024-12-05 09:29
【總結(jié)】DEABC導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用同步練習(xí)1.一點(diǎn)沿直線運(yùn)動(dòng),如果由始點(diǎn)起經(jīng)過(guò)t秒后的距離為43215243sttt???,那么速度為零的時(shí)刻是()A.1秒末B.0秒C.4秒末D.0,1,4秒末2.某公司在
【總結(jié)】導(dǎo)數(shù)的應(yīng)用知識(shí)與技能:1.利用導(dǎo)數(shù)研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(?。┲担?.利用導(dǎo)數(shù)求解一些實(shí)際問(wèn)題的最大值和最小值。過(guò)程與方法:1.通過(guò)研究函數(shù)的切線、單調(diào)性、極大(?。┲狄约昂瘮?shù)在連續(xù)區(qū)間[a,b]上的最大(小)值,
2024-11-17 11:59
【總結(jié)】2020/12/241導(dǎo)數(shù)在實(shí)際生活中的應(yīng)用2020/12/2421、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對(duì)任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對(duì)函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對(duì)任意的
2024-11-17 23:31
【總結(jié)】2020/12/2511、最值的概念(最大值與最小值)如果在函數(shù)定義域I內(nèi)存在x0,使得對(duì)任意的x∈I,總有f(x)≤f(x0),則稱f(x0)為函數(shù)f(x)在定義域上的最大值;最值是相對(duì)函數(shù)定義域整體而言的.如果在函數(shù)定義域I內(nèi)存在x0,使得對(duì)任意的x∈I,總有f(x)≥f(x0),則稱f(x0)為
2024-11-18 08:46
【總結(jié)】變化的快慢與變化率一、教學(xué)目標(biāo)(1)理解瞬時(shí)速度,會(huì)運(yùn)用瞬時(shí)速度的定義求物體在某一時(shí)刻的瞬時(shí)速度(2)理解瞬時(shí)變化率概念,實(shí)際背景,培養(yǎng)學(xué)生解決實(shí)際問(wèn)題的能力二、教學(xué)重點(diǎn)、難點(diǎn)重點(diǎn):瞬時(shí)速度,瞬時(shí)變化率概念及計(jì)算難點(diǎn):瞬時(shí)變化率的實(shí)際意義和數(shù)學(xué)意義三、教學(xué)過(guò)程(一)、復(fù)習(xí)引入1、什么叫做平均變化
【總結(jié)】第三章導(dǎo)數(shù)及其應(yīng)用第12課時(shí)導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教學(xué)目標(biāo):;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會(huì)求函數(shù)的單調(diào)區(qū)間;、極小值;會(huì)用導(dǎo)數(shù)求函數(shù)的極大值、極小值;、最小值.教學(xué)重點(diǎn):導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教學(xué)難點(diǎn):導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教學(xué)過(guò)程:Ⅰ.回顧復(fù)習(xí)Ⅱ.基本訓(xùn)練
2024-11-19 17:30
【總結(jié)】常見(jiàn)函數(shù)的導(dǎo)數(shù)教學(xué)過(guò)程Ⅰ.課題導(dǎo)入[師]我們上一節(jié)課學(xué)習(xí)了導(dǎo)數(shù)的概念,導(dǎo)數(shù)的幾何意義.我們是用極限來(lái)定義函數(shù)的導(dǎo)數(shù)的,我們這節(jié)課來(lái)求幾種常見(jiàn)函數(shù)的導(dǎo)數(shù).以后可以把它們當(dāng)作直接的結(jié)論來(lái)用.Ⅱ.講授新課[師]請(qǐng)幾位同學(xué)上來(lái)用導(dǎo)數(shù)的定義求函數(shù)的導(dǎo)數(shù).=C(C是常數(shù)),求y′.[學(xué)生板演]解:y=f(x)=C,∴
2024-11-19 19:51