【總結(jié)】兩點間的距離(一)教學(xué)目標(biāo)1.知識與技能:掌握直角坐標(biāo)系兩點間的距離,用坐標(biāo)證明簡單的幾何問題。2.過程與方法:通過兩點間距離公式的推導(dǎo),能更充分體會數(shù)形結(jié)合的優(yōu)越性。;3.情態(tài)和價值:體會事物之間的內(nèi)在聯(lián)系,能用代數(shù)方法解決幾何問題。(二)教學(xué)重點、難點重點,兩點間距離公式的推導(dǎo);難點,應(yīng)用兩點間距離公式證明幾何問題。(三)教學(xué)方法啟發(fā)引導(dǎo)式教學(xué)
2025-06-07 23:22
【總結(jié)】平面上兩點間的距離【學(xué)習(xí)導(dǎo)航】1.掌握平面上兩點間的距離公式、中點坐標(biāo)公式;2.能運用距離公式、中點坐標(biāo)公式解決一些簡單的問題.(1)平面上兩點111222(,),(,)PxyPxy之間的距離公式為12PP?22212
2024-12-07 23:51
【總結(jié)】兩點間的距離教學(xué)目標(biāo):1.在看圖講故事、看圖回答問題和測量活動中,感受在兩點間的所有連線中線段最短。2.知道兩點間的距離,會測量兩點間的距離。3.感受生活中處處有數(shù)學(xué),增強學(xué)習(xí)數(shù)學(xué)的興趣。教學(xué)重點:理解并能應(yīng)用兩點之間的連線中線段最短,會測量兩點間的距離。教學(xué)難點:理解并能應(yīng)用兩點之間的連線中線段最短。教學(xué)過
2024-11-18 21:07
【總結(jié)】問題探究探究1:已知平面上兩點P1(-1,2),P2(2,)求P1,P2的距離|P1P2|?7探究2:已知平面上兩點P1(x1,y1),P2(x2,y2),如何求P1,P2的距離|P1P2|?探究3:通過上訴探究,請問研究兩點距離你有幾種常用的分析策略?探究4:通已知A(-1,2)
2024-11-18 01:47
【總結(jié)】平面上兩點間的距離【課時目標(biāo)】1.理解并掌握平面上兩點之間的距離公式的推導(dǎo)方法.2.能熟練應(yīng)用兩點間的距離公式解決有關(guān)問題,進一步體會解析法的思想.1.若平面上兩點P1、P2的坐標(biāo)分別為P1(x1,y1),P2(x2,y2),則P1、P2兩點間的距離公式為P1P2=______________.特別地,原點O(
2024-12-05 10:19
【總結(jié)】??13,?Cy)B(),A21,、(xyx求:B、C兩點的距離??23,已知?A??14,、B3?12??13,、?Cy4?????14,B???13,?C??23,?AA、C兩點的距離oxxoyX軸或平行于X軸的直線上的兩點
2024-11-26 18:28
【總結(jié)】兩點間的距離【課時目標(biāo)】1.理解并掌握平面上兩點之間的距離公式的推導(dǎo)方法.2.能熟練應(yīng)用兩點間的距離公式解決有關(guān)問題,進一步體會解析法的思想.1.若平面上兩點P1、P2的坐標(biāo)分別為P1(x1,y1),P2(x2,y2),則P1、P2兩點間的距離公式為|P1P2|=________________.特別地,原
2024-12-05 06:42
【總結(jié)】兩點間的距離∣∣∣∣∣PQ∣=若P(X1,Y1),Q(X2,Y2),則PQ中點M(X,Y)X=,Y=思考P
2024-12-08 13:11
【總結(jié)】兩點間的距離一、教材分析距離概念,在日常生活中經(jīng)常遇到,學(xué)生在初中平面幾何中已經(jīng)學(xué)習(xí)了兩點間的距離、點到直線的距離、兩條平行線間的距離的概念,到高一立體幾何中又學(xué)習(xí)了異面直線距離、點到平面的距離、兩個平面間的距離等.其基礎(chǔ)是兩點間的距離,許多距離的計算都轉(zhuǎn)化為兩點間的距離.在平面直角坐標(biāo)系中任意兩點間的距離是解析幾何重要的基本概念和公式.
2024-12-08 07:03
【總結(jié)】第八章直線和圓的方程8.1兩點間的距離與線段中點的坐標(biāo)創(chuàng)設(shè)情境興趣導(dǎo)入oXY某班教室座位布置是6行9座,如圖:小方格的頂點處都有一位同學(xué),設(shè)小方格邊長為1,圖中A同學(xué)與B同學(xué)的距離是多少?探求:已知平面內(nèi)兩點的坐標(biāo),如何求出這兩點間的距離?A(2,2)B(5,7)
2024-11-17 07:30
【總結(jié)】第八章直線和圓的方程8.1兩點間的距離與線段中點的坐標(biāo)創(chuàng)設(shè)情境興趣導(dǎo)入8.1兩點間的距離與線段中點的坐標(biāo)【學(xué)習(xí)目標(biāo)】掌握兩點間的距離公式與中點坐標(biāo)公式;【重點】兩點間的距離公式與線段中點的坐標(biāo)公式的運用【難點】兩點間的距離公式的理解8.1兩點間的距離與線
【總結(jié)】(2)同一經(jīng)線地表同一條經(jīng)線上兩點間的距離就等于兩點間的緯度差乘111千米。因為每一條經(jīng)線長約2萬千米,每一條經(jīng)線呈半圓狀,為180°,故1°的距離約為20220÷180°≈111(千米)。3、計算實際距離(定距離)(1)赤道上赤道上兩點間的距離等于兩點間的經(jīng)度
2025-01-08 13:54
【總結(jié)】空間兩點間的距離習(xí)題課蘇教版必修2【課時目標(biāo)】1.正確理解直線與圓的概念并能解決簡單的實際問題.2.能利用直線與圓的位置關(guān)系解決簡單的實際問題.3.體會用代數(shù)方法處理幾何問題的思想.用坐標(biāo)方法解決平面幾何問題的“三步曲”:一、填空題1.實數(shù)x,y滿足方程x+y-4=0,則x2+y2的最小值為_
【總結(jié)】問題探究;,,,,,) ?。ǎ?,,,,,) ?。ň嚯x:兩點,再求它們之間的,標(biāo)出:在空間直角坐標(biāo)系中 探究)753()106(2)413()532(11BABABA。與原點間的距離是,,一點中,任意:在空間直角坐標(biāo)系 探究________zyxpOxyz)(2表示什么圖形?,那么是定長:如果
2024-11-17 03:40
【總結(jié)】問題1:長方體的對角線是長方體中的那一條線段?問題2:怎樣測量長方體的對角線的長?問題3:已知長方體的長、寬、高分別是a、b、c,則對角線的長222cbad???問題4:給出空間兩點A(x1,y1,z1),P(x2,y2,z2)可否類比得到一個距離公式?1、設(shè)O(0,0,0),P(x0,y0,z0)
2024-11-17 17:16