freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內容

20xx-20xx南昌中考數學培優(yōu)易錯試卷(含解析)之平行四邊形(已改無錯字)

2025-03-30 22 本頁面
  

【正文】 BE是等邊三角形,∴∠EDB=∠DBE=60176。,∵AB∥DC,∴∠DBC=∠DBE=60176。,∴∠EDF=120176。.【點睛】本題考查了平行四邊形的性質,折疊性質,等邊三角形的性質和判定,主要考查學生運用定理進行推理和計算的能力,題目綜合性比較強,有一定的難度9.如圖,在正方形ABCD中,E是邊AB上的一動點,點F在邊BC的延長線上,且,連接DE,DF,EF. FH平分交BD于點H.(1)求證:;(2)求證::(3)過點H作于點M,用等式表示線段AB,HM與EF之間的數量關系,并證明.【答案】(1)詳見解析;(2)詳見解析;(3),證明詳見解析.【解析】【分析】(1)根據正方形性質, 得到.(2)由,平分,,所以.(3)過點作于點,由正方形性質,,所以.由,得.【詳解】(1)證明:∵四邊形是正方形,∴,.∴.∵。∴.∴.∴.∴.(2)證明:∵,∴.∵,∴.∵,平分,∴.∵平分,∴.∵,∴.∴.(3).證明:過點作于點,如圖,∵正方形中,,∴.∵平分,∴.∵,∴.∴.∵,∴.【點睛】本題考查正方形的性質、勾股定理、角平分線的性質、三角函數,題目難度較大,解題的關鍵是熟練掌握正方形的性質、勾股定理、角平分線的性質、三角函數.10.(感知)如圖①,四邊形ABCD、CEFG均為正方形.可知BE=DG.(拓展)如圖②,四邊形ABCD、CEFG均為菱形,且∠A=∠F.求證:BE=DG.(應用)如圖③,四邊形ABCD、CEFG均為菱形,點E在邊AD上,點G在AD延長線上.若AE=2ED,∠A=∠F,△EBC的面積為8,菱形CEFG的面積是_______.(只填結果)【答案】見解析【解析】試題分析:探究:由四邊形ABCD、四邊形CEFG均為菱形,利用SAS易證得△BCE≌△DCG,則可得BE=DG;應用:由AD∥BC,BE=DG,可得S△ABE+S△CDE=S△BEC=S△CDG=8,又由AE=3ED,可求得△CDE的面積,繼而求得答案.試題解析:探究:∵四邊形ABCD、四邊形CEFG均為菱形,∴BC=CD,CE=CG,∠BCD=∠A,∠ECG=∠F.∵∠A=∠F,∴∠BCD=∠ECG.∴∠BCD∠ECD=∠ECG∠ECD,即∠BCE=∠DCG.在△BCE和△DCG中, ∴△BCE≌△DCG(SAS),∴BE=DG.應用:∵四邊形ABCD為菱形,∴AD∥BC,∵BE=DG,∴S△ABE+S△CDE=S△BEC=S△CDG=8,∵AE=3ED,∴S△CDE= ,∴S△ECG=S△CDE+S△CDG=10∴S菱形CEFG=2S△ECG=20.11.在平面直角坐標系中,O為原點,點A(﹣6,0)、點C(0,6),若正方形OABC繞點O順時針旋轉,得正方形OA′B′C′,記旋轉角為α:(1)如圖①,當α=45176。時,求BC與A′B′的交點D的坐標;(2)如圖②,當α=60176。時,求點B′的坐標;(3)若P為線段BC′的中點,求AP長的取值范圍(直接寫出結果即可).【答案】(1);(2);(3).【解析】【分析】(1)當α=45176。時,延長OA′經過點B,在Rt△BA′D中,∠OBC=45176。,A′B=,可求得BD的長,進而求得CD的長,即可得出點D的坐標;(2)過點C′作x軸垂線MN,交x軸于點M,過點B′作MN的垂線,垂足為N,證明△OMC′≌△C′NB′,可得C′N=OM=,B′N=C′M=3,即可得出點B′的坐標;(3)連接OB,AC相交于點K,則K是OB的中點,因為P為線段BC′的中點,所以PK=OC′=3,即點P在以K為圓心,3為半徑的圓上運動,即可得出AP長的取值范圍.【詳解】解:(1)∵A(﹣6,0)、C(0,6),O(0,0),∴四邊形OABC是邊長為6的正方形,當α=45176。時,如圖①,延長OA′經過點B,∵OB=6,OA′=OA=6,∠OBC=45176。,∴A′B=,∴BD=(),∴CD=6﹣()=,∴BC與A′B′的交點D的坐標為(,6);(2)如圖②,過點C′作x軸垂線MN,交x軸于點M,過點B′作MN的垂線,垂足為N,∵∠OC′B′=90176。,∴∠OC′M=90176。﹣∠B′C′N=∠C′B′N,∵OC′=B′C′,∠OMC′=∠C′NB′=90176。,∴△OMC′≌△C′NB′(AAS),當α=60176。時,∵∠A′OC′=90176。,OC′=6,∴∠C′OM=30176。,∴C′N=OM=,B′N=C′M=3,∴點B′的坐標為;(3)如圖③,連接OB,AC相交于點K,則K是OB的中點,∵P為線段BC′的中點,∴PK=OC′=3,∴P在以K為圓心,3為半徑的圓上運動,∵AK=3,∴AP最大值為,AP的最小值為,∴AP長的取值范圍為.【點睛】本題考查正方形性質,全等三角形判定與性質,三角形中位線定理.(3)問解題的關鍵是利用中位線定理得出點P的軌跡.12.定義:我們把三角形被一邊中線分成的兩個三角形叫做“友好三角形”.性質:如果兩個三角形是“友好三角形”,那么這兩個三角形的面積相等.理解:如圖①,在△ABC中,CD是AB邊上的中線,那么△ACD和△BCD是“友好三角形”,并且S△ACD=S△BCD.應用:如圖②,在矩形ABCD中,AB=4,BC=6,點E在AD上,點F在BC上,AE=BF,AF與BE交于點O.(1)求證:△AOB和△AOE是“友好三角形”;(2)連接OD,若△AOE和△DOE是“友好三角形”,求四邊形CDOF的面積.探究:在△ABC中,∠A=30176。,AB=4,點D在線段AB上,連接CD,△ACD和△BCD是“友好三角形”,將△ACD沿CD所在直線翻折,得到△A′CD,若△A′CD與△ABC重合部分的面積等于△ABC面積的,請直接寫出△ABC的面積.【答案】(1)見解析;(2)12;探究:2或2.【解析】試題分析:(1)利用一組對邊平行且相等的四邊形是平行四邊形,得到四邊形ABFE是平行四邊形,然后根據平行四邊形的性質證得OE=OB,即可證得△AOE和△AOB是友好三角形;(2)△AOE和△DOE是“友好三角形”,即可得到E是AD的中點,則可以求得△ABE、△ABF的面積,根據S四邊形CDOF=
點擊復制文檔內容
法律信息相關推薦
文庫吧 www.dybbs8.com
備案圖片鄂ICP備17016276號-1