【摘要】1.同底數(shù)的指數(shù)冪運(yùn)算性質(zhì)?2.教材是如何引入對(duì)數(shù)運(yùn)算性質(zhì)的?3.對(duì)數(shù)運(yùn)算性質(zhì)與同底數(shù)冪運(yùn)算性質(zhì)有何聯(lián)系?自我感悟基礎(chǔ)檢測(cè)檢測(cè)1:求下列各式的值elnlglog);();()(31002)24(15572?檢測(cè)2:xyxalgZyxlgZxylogZlogyl
2025-03-22 14:52
【摘要】課題:對(duì)數(shù)與對(duì)數(shù)的運(yùn)算精講部分學(xué)習(xí)目標(biāo)展示(1)理解對(duì)數(shù)的概念、常用對(duì)數(shù)及自然對(duì)數(shù)的概念;會(huì)進(jìn)行對(duì)數(shù)式與指數(shù)式的互化;(2)掌握對(duì)數(shù)的運(yùn)算法則,會(huì)進(jìn)行對(duì)數(shù)運(yùn)算;(3)對(duì)數(shù)的換底公式;銜接性知識(shí)1.已知23221xx???,求實(shí)數(shù)x的值解:由已知,得2320xx???,所以1x?或2x?
2024-12-18 15:49
【摘要】對(duì)數(shù)及其運(yùn)算(二)教學(xué)目標(biāo):理解對(duì)數(shù)的運(yùn)算性質(zhì),掌握對(duì)數(shù)的運(yùn)算法則教學(xué)重點(diǎn):掌握對(duì)數(shù)的運(yùn)算法則教學(xué)過(guò)程:1、復(fù)習(xí):(1)、對(duì)數(shù)的概念,(2)、對(duì)數(shù)的性質(zhì),(3)、對(duì)數(shù)恒等式2、推導(dǎo)對(duì)數(shù)運(yùn)算法則:NMMNaaalogloglog??NMNMaaalogloglog??
2024-12-28 01:49
【摘要】第2課時(shí)對(duì)數(shù)的運(yùn)算[學(xué)習(xí)目標(biāo)],能運(yùn)用運(yùn)算性質(zhì)進(jìn)行對(duì)數(shù)的有關(guān)計(jì)算.,能用換底公式將一般對(duì)數(shù)化為自然對(duì)數(shù)或常用對(duì)數(shù).[知識(shí)鏈接]在指數(shù)的運(yùn)算性質(zhì)中:am·an=am+n,aman=am-n,(am)n=amn.[預(yù)習(xí)導(dǎo)引]1.對(duì)數(shù)的運(yùn)算性質(zhì)如果a>0,且a≠1,M>
2024-12-27 21:18
【摘要】(一)(一)教學(xué)目標(biāo)1.知識(shí)技能:①理解對(duì)數(shù)的概念,了解對(duì)數(shù)與指數(shù)的關(guān)系;②理解和掌握對(duì)數(shù)的性質(zhì);③掌握對(duì)數(shù)式與指數(shù)式的關(guān)系.2.過(guò)程與方法:通過(guò)與指數(shù)式的比較,引出對(duì)數(shù)定義與性質(zhì).3.情感、態(tài)度、價(jià)值觀(1)學(xué)會(huì)對(duì)數(shù)式與指數(shù)式的互化,從而培養(yǎng)學(xué)生的類比、分析、歸納能力.(2)通過(guò)對(duì)數(shù)的運(yùn)算法則的學(xué)習(xí),培養(yǎng)學(xué)生的嚴(yán)謹(jǐn)?shù)乃季S品質(zhì).(3)在學(xué)習(xí)過(guò)程
2024-08-23 07:08
【摘要】對(duì)數(shù)與對(duì)數(shù)運(yùn)算(2)——對(duì)數(shù)的運(yùn)算性質(zhì)復(fù)習(xí)回顧:???對(duì)數(shù)的基本性質(zhì)log10,(01)aaa???且log1(01)aaaa???且log(aNaN?對(duì)數(shù)恒等式)(1)負(fù)數(shù)和零沒有對(duì)數(shù),即(N0)(3)(4)
2025-08-08 04:22
【摘要】下午4時(shí)31分53秒.1對(duì)數(shù)下午4時(shí)31分53秒思考問(wèn)題一:某個(gè)同學(xué)拿出一張紙,進(jìn)行對(duì)折折紙次數(shù)和層數(shù)有什么關(guān)系?下午4時(shí)31分53秒折紙次數(shù)x層數(shù)N2xN?折紙次數(shù)和層數(shù)的關(guān)系:思考問(wèn)題一:如果我已經(jīng)知道一共有128層,你能計(jì)算折了多少次嗎?
2025-01-21 16:32
【摘要】對(duì)數(shù)函數(shù)的概念與圖象;。知識(shí)與技能目標(biāo):過(guò)程與方法目標(biāo):情感態(tài)度價(jià)值觀目標(biāo):經(jīng)歷函數(shù)和的畫法,觀察其圖象特征并用代數(shù)語(yǔ)言進(jìn)行描述得出函數(shù)性質(zhì),進(jìn)一步探究出函數(shù)的圖象與性質(zhì).
2024-12-07 19:51
【摘要】2020年高中數(shù)學(xué)對(duì)數(shù)函數(shù)學(xué)案新人教B版必修1一、三維目標(biāo):知識(shí)與技能:,圖象;,并可以利用圖像來(lái)解決相關(guān)問(wèn)題;3.能夠利用對(duì)數(shù)函數(shù)的相性質(zhì)解決相關(guān)問(wèn)題;函數(shù)形式的復(fù)合函數(shù)單調(diào)性及最值問(wèn)題,并可以利用圖像來(lái)解決相關(guān)問(wèn)題。過(guò)程與方法:,滲透數(shù)形結(jié)合的數(shù)學(xué)思想。圖像,感受數(shù)形結(jié)合思想,培養(yǎng)學(xué)生數(shù)學(xué)的分析問(wèn)題的
2024-12-09 22:42
【摘要】§對(duì)數(shù)函數(shù)2.對(duì)數(shù)與對(duì)數(shù)運(yùn)算第1課時(shí)對(duì)數(shù)課時(shí)目標(biāo),能進(jìn)行指數(shù)式與對(duì)數(shù)式的互化.對(duì)數(shù)的意義.,會(huì)用對(duì)數(shù)恒等式進(jìn)行運(yùn)算.1.對(duì)數(shù)的概念如果ax=N(a0,且a≠1),那么數(shù)x叫做__________________,記作____________,其中a叫做_____
【摘要】第2課時(shí)對(duì)數(shù)的運(yùn)算課時(shí)目標(biāo).、求值和證明.底公式并能用換底公式將一般對(duì)數(shù)化成自然對(duì)數(shù)和常用對(duì)數(shù).1.對(duì)數(shù)的運(yùn)算性質(zhì)如果a0,且a≠1,M0,N0,那么:(1)loga(M·N)=____________________;(2)logaMN=_____________
【摘要】課題:§對(duì)數(shù)的運(yùn)算性質(zhì)教學(xué)目的:(1)理解對(duì)數(shù)的運(yùn)算性質(zhì);(2)知道用換底公式能將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù);(3)通過(guò)閱讀材料,了解對(duì)數(shù)的發(fā)現(xiàn)歷史以及對(duì)簡(jiǎn)化運(yùn)算的作用.教學(xué)重點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì),用換底公式將一般對(duì)數(shù)轉(zhuǎn)化成自然對(duì)數(shù)或常用對(duì)數(shù)教學(xué)難點(diǎn):對(duì)數(shù)的運(yùn)算性質(zhì)和換底公式的熟練運(yùn)用.教學(xué)過(guò)程:
【摘要】知識(shí)回顧同底數(shù)冪的運(yùn)算性質(zhì)與對(duì)數(shù)運(yùn)算性質(zhì)自我感悟)22)(33(325432143845432loglogloglogloglogloglogalogClogca??????)()()(化簡(jiǎn)下列各式:基礎(chǔ)檢測(cè)檢測(cè)1:求值9425532logloglo
2025-03-22 14:51
【摘要】對(duì)數(shù)一、選擇題1.已知loga2b=c,則有()A.a(chǎn)2b=cB.a(chǎn)2c=bC.bc=2aD.c2a=b2.下列指數(shù)式與對(duì)數(shù)式互化不正確的一組是()A.e0=1與ln1=0B.813-=12與log812=-13C.log39=2與912=3D.log7
【摘要】一般地,如果??1,0??aaa的b次冪等于N,就是Nab?,那么數(shù)b叫做以a為底N的對(duì)數(shù),記作bNa?loga叫做對(duì)數(shù)的底數(shù),N叫做真數(shù)。定義:前課復(fù)習(xí)舉例:1642?????216log4?100102?2100log
2025-01-29 11:35