【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)與函數(shù)的綜合性問題導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):、極值、最值、參數(shù)等問題.、函數(shù)、不等式等知識的綜合.重點:導(dǎo)數(shù)與方程、函數(shù)、不等式等知識的綜合課前預(yù)習(xí):e為自然對數(shù)的底數(shù),則函數(shù)y=xex的單調(diào)遞增區(qū)間是f(x)=
2024-12-25 06:45
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1.理解兩個函數(shù)的積的導(dǎo)數(shù)法則、和(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù)教學(xué)重點:靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點:函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用.
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、理解極大值與極小值的概念;2、會求簡單函數(shù)的極大值與極小值。重點:極大值與極小值的概念和求法。課前預(yù)學(xué):問題1:判斷函數(shù)y=f(x)的極值的一般方法解方程
2024-12-25 06:44
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—最大值與最小值(1)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):.[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值的思想方法和步驟..重點:求在閉區(qū)間[a,b]上連續(xù)函數(shù)f(x)的最大值和最小值課前預(yù)習(xí):問題1:函數(shù)的最值函數(shù)的最
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第5課時常見函數(shù)的導(dǎo)數(shù)教學(xué)目標(biāo):掌握初等函數(shù)的求導(dǎo)公式教學(xué)重點:用定義推導(dǎo)常見函數(shù)的導(dǎo)數(shù)公式教學(xué)難點:用定義推導(dǎo)常見函數(shù)的導(dǎo)數(shù)公式教學(xué)過程:Ⅰ.問題情境本節(jié)課我們將學(xué)習(xí)常見函數(shù)的導(dǎo)數(shù)。首先我們來求下面幾個函數(shù)的導(dǎo)數(shù)。(1)y=x
2024-12-09 17:30
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第3課時瞬時速度與瞬時加速度教學(xué)目標(biāo):,掌握如何由平均速度和平均加速度“逼近”瞬時速度與瞬時加速度的過程.理解平均變化率的幾何意義;理解△x無限趨近于0的含義;.教學(xué)重點:瞬時速度與瞬時加速度的定義教學(xué)難點:瞬時速度與瞬時加速度的求法教學(xué)過程:
【摘要】江蘇省響水中學(xué)高中數(shù)學(xué)第3章《導(dǎo)數(shù)及其應(yīng)用》導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用—極大值與極小值(2)導(dǎo)學(xué)案蘇教版選修1-1學(xué)習(xí)目標(biāo):1、進一步鞏固應(yīng)用導(dǎo)數(shù)求函數(shù)極值的方法2、應(yīng)用極值解決求參數(shù)的有關(guān)問題。重點:應(yīng)用極求參數(shù)及參數(shù)范圍問題課前預(yù)學(xué):1、函數(shù))0(??xxeyx的極小值為
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第12課時導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教學(xué)目標(biāo):;能利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性,會求函數(shù)的單調(diào)區(qū)間;、極小值;會用導(dǎo)數(shù)求函數(shù)的極大值、極小值;、最小值.教學(xué)重點:導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教學(xué)難點:導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用教學(xué)過程:Ⅰ.回顧復(fù)習(xí)Ⅱ.基本訓(xùn)練
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第8課時函數(shù)的單調(diào)性教學(xué)目標(biāo):;.教學(xué)重點:利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性教學(xué)難點:利用導(dǎo)數(shù)判斷函數(shù)單調(diào)性教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué)::Ⅲ.數(shù)學(xué)應(yīng)用例1:確定函數(shù)f(x)=x2-2x+4
【摘要】江蘇省建陵高級中學(xué)2020-2020學(xué)年高中數(shù)學(xué)瞬時變化率與瞬時加速度導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)目標(biāo)】1.了解在非常短時間內(nèi)的平均速度、平均加速度十分接近一個時刻的瞬時速度、瞬時加速度;【課前預(yù)習(xí)】1.設(shè)物體的運動規(guī)律是s=s(t),則物體在t到t+△t這段時間內(nèi)的平均速度為st=
2024-12-09 19:53
【摘要】課題:瞬時變化率??導(dǎo)數(shù)教學(xué)目標(biāo):(1)什么是曲線上一點處的切線,如何作曲線上一點處的切線?如何求曲線上一點處的曲線?注意曲線未必只與曲線有一個交點。(2)了解以曲代直、無限逼近的思想和方法(3)瞬時速度與瞬時加速度的定義及求解方法。(4)導(dǎo)數(shù)的概念,其產(chǎn)生的背景,如何求函數(shù)在某點處的
2024-12-09 21:26
【摘要】江蘇省建陵高級中學(xué)2021-2021學(xué)年高中數(shù)學(xué)導(dǎo)數(shù)概念導(dǎo)學(xué)案(無答案)蘇教版選修1-1【學(xué)習(xí)任務(wù)】1.了解導(dǎo)數(shù)的概念.2.掌握用導(dǎo)數(shù)的定義求導(dǎo)數(shù)的一般方法.3.在了解導(dǎo)數(shù)與幾何意義的基礎(chǔ)上,加深對導(dǎo)數(shù)概念的理解.【課前預(yù)習(xí)】1、函數(shù)223yxx??在3x?時的導(dǎo)數(shù)為,在
2024-12-24 18:01
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用第7課時函數(shù)的和、差、積、商的導(dǎo)數(shù)(2)教學(xué)目標(biāo):、和(或差)的導(dǎo)數(shù)法則,學(xué)會用法則求復(fù)雜形式的函數(shù)的導(dǎo)數(shù);.教學(xué)重點:靈活應(yīng)用函數(shù)的和、差、積、商的求導(dǎo)法則教學(xué)難點:函數(shù)的積、商的求導(dǎo)法則的綜合應(yīng)用教學(xué)過程:Ⅰ.問題情境Ⅱ.建構(gòu)數(shù)學(xué)
【摘要】§本課時欄目開關(guān)填一填研一研練一練【學(xué)習(xí)要求】1.了解導(dǎo)數(shù)在解決實際問題中的作用.2.掌握利用導(dǎo)數(shù)解決簡單的實際生活中的優(yōu)化問題.【學(xué)法指導(dǎo)】1.在利用導(dǎo)數(shù)解決實際問題的過程中體會建模思想.2.感受導(dǎo)數(shù)知識在解決實際問題中的作
2024-12-08 08:07
【摘要】1.2.2函數(shù)的和、差、積、商的導(dǎo)數(shù)【學(xué)習(xí)要求】1.理解函數(shù)的和、差、積、商的求導(dǎo)法則.2.理解求導(dǎo)法則的證明過程,能夠綜合運用導(dǎo)數(shù)公式和導(dǎo)數(shù)運算法則求函數(shù)的導(dǎo)數(shù).【學(xué)法指導(dǎo)】應(yīng)用導(dǎo)數(shù)的四則運算法則和已學(xué)過的常用函數(shù)的導(dǎo)數(shù)公式可迅速解決一類簡單函數(shù)的求導(dǎo)問題.要透徹理解函數(shù)求導(dǎo)法則的結(jié)構(gòu)內(nèi)涵,注
2024-12-07 23:13