【摘要】第一篇:二次函數(shù)的應(yīng)用教案 第二章二次函數(shù) 二次函數(shù)的應(yīng)用(1) 一、知識點 、教學(xué)目標(biāo)知識與技能: 能夠分析和表示不同背景下實際問題中變量之間的二次函數(shù)關(guān)系,并能夠運用二次函數(shù)的知識解決實...
2024-10-24 21:13
【摘要】用心做一做,馬到成功!1.長方形的周長為20cm,設(shè)它的一邊長xcm,面積為2cmy.y隨x變化而變化的規(guī)律是什么?你能分別用函數(shù)表達(dá)式、表格和圖像表示出來嗎?(1)用函數(shù)表達(dá)式表示:y?_____________;(2)用表格表示:x12345678910x?]
2024-12-23 07:34
【摘要】問題1說出下列函數(shù)的開口方向、對稱軸、頂點(1)y=(x+2)2-1;(2)y=-(x-2)2+2;(3)y=a(x+h)2+k.(1)y=x2和y=ax2(a?0)的圖像之間有什么關(guān)系?問題2(2)y=ax2和y=a(x+h)2+k
2024-12-08 13:33
【摘要】幾何的三種語言議一議P23定理:等腰三角形的兩個底角相等(等邊對等角).ACB如圖,在△ABC中,∵AB=AC(已知),∴∠B=∠C(等角對等邊).?證明后的結(jié)論,以后可以直接運用.幾何的三種語言議一議P23?推論:?等腰三角形頂角的平分線,底邊上的中線,底邊
2024-09-04 02:27
【摘要】函數(shù)函數(shù)知多少變量之間的關(guān)系一次函數(shù)y=kx+b(k≠0)反比例函數(shù)二次函數(shù)正比例函數(shù)y=kx(k≠0)??.0??kxky溫故知新回顧與思考噴泉(1)噴泉(2)九年級數(shù)學(xué)(下)第二章《二次函數(shù)》§2、1二次函數(shù)所描述的關(guān)系二次
2024-12-20 08:35
【摘要】二次根式化簡的應(yīng)用與的辨析1、區(qū)別2、聯(lián)系3、注意問題①數(shù)學(xué)含義不同②運算順序不同④運算結(jié)果不同③a的取值范圍不同(一)填空一、正用原點的左側(cè)或原點-3≤x≤0x≤21、當(dāng)a0時,等于(
2024-11-26 17:46
【摘要】第四節(jié)二次函數(shù)y=ax2+bx+c的圖象(二)函數(shù)表達(dá)式開口方向增減性對稱軸頂點坐標(biāo)2axy?caxy??2??2hxay??a0,開口向上;a0,開口向下.)0(?xy直線軸)0,0()0(?xy直線軸),0(chx?直線)0,(h??khxay??
2024-12-20 08:17
【摘要】二次函數(shù)的圖像及性質(zhì)y=ax2+c可由y=ax2的圖像上下平移而得到當(dāng)c0時,向上平移c個單位;當(dāng)c0時,向下平移︱c︱個單位。上一節(jié)我們從探索y=3x2的圖像出發(fā),研究了y=ax2及y=ax2+c的圖像和性質(zhì)問題1函數(shù)y=ax2+c和函數(shù)y=ax
2024-12-08 21:18
【摘要】二次函數(shù)復(fù)習(xí)說一說:通過二次函數(shù)的學(xué)習(xí),你應(yīng)該學(xué)什么?你學(xué)會了什么?1、理解二次函數(shù)的概念;2、會用描點法畫出二次函數(shù)的圖象;3、會用配方法和公式確定拋物線的開口方向,對稱軸,頂點坐標(biāo);4、會用待定系數(shù)法求二次函數(shù)的解析式;5、能用二次函數(shù)的知識解決生活中的實際問題及簡單的綜合運用。
2024-12-28 05:33
【摘要】章末熱點考向?qū)n}專題一恰當(dāng)選擇確定二次函數(shù)表達(dá)式的方法求二次函數(shù)的解析式時,通常有三種設(shè)法:(1)一般式:y=ax2+bx+c;(2)頂點式:y=a(x-h(huán))2+k;(3)交點式:y=a(x-x1)(x-x2),其中x1、x2是拋物線與x軸交點的橫坐標(biāo).例1:已知二次函數(shù)圖象
2024-12-28 14:25
【摘要】1二次函數(shù)第二章二次函數(shù)課堂達(dá)標(biāo)素養(yǎng)提升第二章二次函數(shù)1二次函數(shù)課堂達(dá)標(biāo)一、選擇題1二次函數(shù)1.2022·浦東新區(qū)一模下列函數(shù)中,是二次函數(shù)的是()A.y=-4x+5B.y=x(2x-3)C
2025-07-02 21:35
【摘要】舉一綱而萬目張,解一卷而眾篇明。
2024-12-28 03:10
【摘要】4.二次函數(shù)y=ax2+bx+c的圖象1.二次函數(shù)y=a(x-h(huán))2和y=a(x-h(huán))2+k的圖象與性質(zhì)(1)函數(shù)y=2(x-1)2的對稱軸是_______,頂點坐標(biāo)是_______,當(dāng)x1時,函數(shù)值隨x的增大而_______,當(dāng)x
2024-12-20 08:37
【摘要】復(fù)習(xí):1、什么是函數(shù)?2、什么叫做一次函數(shù)?3、什么叫做反比例函數(shù)?4、函數(shù)有哪些表示方法?在某個變化過程中,有兩個變量x和y,如果對于x的每一個可取的值,都有唯一一個y值與它對應(yīng),那么y稱為x的函數(shù)。形如y=kx+b(k、b為常數(shù),k≠0)形如y=(k為常數(shù),
【摘要】二次函數(shù)y=ax2+c的圖象與性質(zhì)(重點)y=ax2+c函數(shù)c0c0圖象函數(shù)y=ax2+c開口方向(1)向______(2)向______對稱軸y軸(直線x=0)