【正文】
熱量平衡表帶入熱量kJ/h帶出熱量kJ/h塔側(cè)粗甲醇入熱塔頂二甲醚出熱塔頂加入冷凝殘液入熱塔頂回流甲醇蒸汽塔頂回流液入熱塔底預(yù)后粗甲醇加熱蒸汽熱損失總?cè)霟峥偝鰺崂鋮s水用量計(jì)算 假設(shè)入口冷卻水的溫度為30℃,出口冷卻水的溫度40℃,℃ Q入=Q甲醇+Q甲醇蒸汽=+=Q出=Q二甲醚+Q回流液+Q損失 =+ +102064615% =Q傳=Q入-Q出=-= 又因?yàn)?Q傳=G1水(40-30)=所以得到 G1水= 加壓塔的熱量衡算設(shè)計(jì)的操作條件為:塔頂?shù)臏囟?15℃,回流溫度為115℃,塔底的溫度為124℃,進(jìn)料的溫度為82℃,甲醇溫度40℃。原料液中甲醇的摩爾分?jǐn)?shù):Yf==精甲醇中甲醇的摩爾分?jǐn)?shù):Yd== 殘液中甲醇的摩爾分?jǐn)?shù):Yw==進(jìn)料液相中甲醇的摩爾分?jǐn)?shù):Xf==精甲醇中甲醇的摩爾分?jǐn)?shù):Xd==殘液中甲醇的摩爾分?jǐn)?shù):Xw==進(jìn)料液的平均摩爾質(zhì)量:Mf=XfM甲醇+(1-Xf=)M水=32+(1-)18=同理可求得:餾出液的平均摩爾質(zhì)量:Md=釜?dú)堃旱钠骄栙|(zhì)量:Mw=(2)操作溫度和壓力精餾段 平均溫度:1/2(70+65)=℃ 入口壓力(表壓):(106-106)69/85+106= kPa 平均壓力(表壓):1/2(103+10103) =提餾段 平均溫度:1/2(70+105) =℃ 平均壓力(表壓):1/2(103+70103) = 塔板數(shù)的計(jì)算F===精餾段物料量[12]: D精=F==提餾段物料量:W提=F== 先求平均揮發(fā)度:查數(shù)據(jù)手冊得到以下數(shù)據(jù):甲醇的飽和蒸汽壓[1],105℃ 70℃ 水的飽和蒸汽壓[11],105℃ 70℃由公式[12]得: 70℃時(shí), 105℃時(shí),平均揮發(fā)度:已知:Xd=,Xw=。 精餾段與提餾段的體積流量已知精餾段的數(shù)據(jù)如下表42表42 精餾段數(shù)據(jù)所處位置進(jìn)料板塔頂(第一板)質(zhì)量分?jǐn)?shù)xf=xl=y(tǒng)f=y(tǒng)l=摩爾分?jǐn)?shù)Xf =Xl =Y(jié)f =Y(jié)l =摩爾質(zhì)量kg/kmolMLf =MLD=MVf=MVD=溫度℃7065液相平均摩爾質(zhì)量:M=kg/kmol液相的平均溫度:℃℃下查工具書得到:kg/m3 ,那么液相的平均密度為:而其中的所以,那么精餾段的液相負(fù)荷為:L=RD==汽相平均摩爾質(zhì)量為:若氣體為理想氣體,℃下,103 kPa下:汽相密度為:其中的平均質(zhì)量分?jǐn)?shù)為所以有那么精餾段的汽相負(fù)荷為:V=(R+1)D== Vn=精餾段的負(fù)荷情況列表43 表43 精餾段的汽液相負(fù)荷表名稱液相汽相平均摩爾質(zhì)量kg/kmol平均密度kg/m3體積流量m3/h 先整理提餾段的數(shù)據(jù)于表44表44 提餾段數(shù)據(jù)所處位置進(jìn)料板塔釜質(zhì)量分?jǐn)?shù)xf=xl=y(tǒng)f=y(tǒng)l=摩爾分?jǐn)?shù)Xf =Xl =Y(jié)f =Y(jié)l =摩爾質(zhì)量kg/kmolMLf =MLw=MVf=Mvw=溫度℃70105液相平均摩爾質(zhì)量:M=液相平均溫度為:℃℃下查工具書得到:[11],[1]液相平均密度為:其中的平均質(zhì)量分?jǐn)?shù):所以,提餾段的液相負(fù)荷 汽相平均摩爾質(zhì)量:若氣體為理想氣體,℃下,103kPa下:汽相平均密度為:其中平均質(zhì)量分?jǐn)?shù)為:所以,提餾段的汽相負(fù)荷: 那么提餾段的負(fù)荷如表45表45 提餾段的汽液相負(fù)荷名稱液相汽相平均摩爾質(zhì)量kg/kmol平均密度kg/m3體積流量m3/h 塔徑計(jì)算 該設(shè)計(jì)選用的是F1重閥浮閥塔,全塔選用標(biāo)準(zhǔn)結(jié)構(gòu),板間距HT=。該設(shè)計(jì)可以取清液層高度,選用單溢流弓形降液管,不設(shè)進(jìn)口堰。計(jì)算如下數(shù)據(jù):汽塔的平均蒸汽流量: 汽塔的平均液相流量: 汽塔的汽相平均密度: 汽塔的液相平均密度: 取閥孔動(dòng)能因子F0=11,計(jì)算如下:由于:每層浮閥數(shù)個(gè) 考慮到塔的直徑較大,必須采用分塊式塔盤[14]。塔板開孔率為: 塔板流體力學(xué)驗(yàn)算A. 干板阻力hc 臨界孔速:因?yàn)椋荆瑒t:B. 板上充氣液層阻力因設(shè)備分離烴化液,液相為碳?xì)浠衔铮梢匀〕錃庀禂?shù)為。那么則單板壓降:為了防止液泛,需要嚴(yán)格控制降液管的液層高度: A. 氣體通過塔板的壓降,也即液降高度B. 液體通過降液管的壓頭損失:因?yàn)闆]有設(shè)進(jìn)口堰,則液降高度C. 板上的液層高度為那么:取,選定的,可以得到:可見,設(shè)計(jì)可以防止液泛。 塔板負(fù)荷性能圖 泛點(diǎn)率: 對于一定的物系和一定的塔板已知,相對于的泛點(diǎn)率上限可確定,VL關(guān)系,按泛點(diǎn)率80%計(jì)算:得到:由以上式子可知:霧沫夾帶線為直線。由,得到: ,那么: 漏液線對于F1 重閥,以為規(guī)定氣體最小的負(fù)荷。很明顯,操作的時(shí)候需要注意防止霧沫夾帶。在工業(yè)生產(chǎn)中,一般解決這個(gè)問題是通過增加塔板數(shù),減少回流比來使操作點(diǎn)下移,因此,本設(shè)計(jì)應(yīng)用于實(shí)際生產(chǎn)中后需要增加適當(dāng)?shù)乃鍞?shù)來防止霧沫夾帶的發(fā)生。由于塔內(nèi)的甲醇水混合液較清潔,不需要經(jīng)常清洗內(nèi)部構(gòu)件,所以可以取每隔8塊塔板設(shè)一個(gè)人孔,這樣設(shè)置的人孔數(shù)為:n=32247。(2)對于塔設(shè)備的選擇,通過對各種塔的比較,得出F1重型浮閥塔最適合本設(shè)計(jì)。(3)對精餾的常壓塔階段進(jìn)行工藝設(shè)計(jì),并對該塔的車間進(jìn)行了簡單的設(shè)計(jì)。在此,特意要感謝李云凱老師對我的悉心指導(dǎo)。通過李老師的指導(dǎo),我對工藝的選擇有了正確的認(rèn)識,并對設(shè)備有了深刻的認(rèn)識,對于完成論文起到了至關(guān)重要的作用。他治學(xué)嚴(yán)謹(jǐn)?shù)膽B(tài)度必將成為以后我學(xué)習(xí)和工作中榜樣。論文的完成同樣也離不開同學(xué)的幫助和關(guān)心??偠灾?,我要忠心感謝所有對我論文有過幫助、指導(dǎo)的老師和同學(xué)們!參考文獻(xiàn)[1] 劉光啟,馬連湘,劉杰.化學(xué)化工物性數(shù)據(jù)手冊(有機(jī)卷)[M].化學(xué)工業(yè)出版社.2002.5: 559~613[2] 夏清,陳常貴.化工原理(上冊)[M].修訂版.天津大學(xué)出版社.2009.1[3] Robert H.Williams Eric D. with permission from Energy for Sustainable Development[J].2003.12:103~105[4] 魏文德.有機(jī)化工原料大全(第二版)上卷[M].化學(xué)工業(yè)出版社.1991.1:806[5] Dimmling W.Seipenbusch R.Hydrocarbon Processing.1975,45(9):169[6] Othmer D F. Methanolaversatile Synfuel.1983[7] 陳平.現(xiàn)代化工[J].1996,16(12):36[8] 謝克昌,房鼎業(yè).甲醇工藝學(xué)[M].化學(xué)工業(yè)出版社.2010.5[9] 丁振亭.吉化科技[J].1995,3(1):1~3[10] 中國化工信息[J].1997,(13):6~10[11] 煤化工[J].2010,第一期[12] 夏清,陳常貴.化工原理(下冊)[M]..2009.1[13] 劉光啟,馬連湘,劉杰.化學(xué)化工物性數(shù)據(jù)手冊(無機(jī)卷)[M].化學(xué)工業(yè)出版社.2002.4: 3~44[14] 賈紹義,柴誠敬.化工原理課程設(shè)計(jì)[M].天津大學(xué)出版社.2009.1:119~121[15] 刁玉瑋,王立業(yè),俞健良.化工設(shè)備機(jī)械基礎(chǔ)[M].大連理工大學(xué)出版社.2009.1:309~310附錄(1) 三塔精餾工藝流程圖、(2) 常壓塔結(jié)構(gòu)圖(3) 常壓塔車間豎面圖(4) 常壓塔車間平面圖外文資料A parison of direct and indirectiquefaction technologies for making fluid fuels from coallRobert H. Williams and Eric D. LarsonPrinceton Environmental Institute, Princeton UniversityGuyot Hall, Washington Road, Princeton, NJ 085441003, USAEmail (Williams): rwilliam1. Introduction China, with its rapidly growing demand for transportation fuels, scant domestic oil and natural gas resources but abundant coal, is likely to turn to coal as a basis for pro viding synthetic fluid fuels for transportation, cooking, and other applications that are not easily served by elec tricity. Two very different approaches to providing fluid fuels from coal are described and pared in this paper: direct coal liquefaction (DCL) and indirect coal liquefaction (ICL). For both approaches a major challenge is to in crease the hydrogencarbon ratio. For finished hydrocar bon fuels such as gasoline and diesel, H/C ~ 2 (molar basis). For petroleum crude oil, the ratio ranges from to . For typical bituminous coals, H/C ~ . 2. Methanol MeOH is a wellestablished chemical modity used throughout the world. It can potentially also be used in directly or directly (see Box 1) as a fuel. The MeOH produced can be further processed to make gasoline by the Mobil process (a mercial technology that can provide gasoline at attractive costs from lowcost stranded natural gas [Tabak, 2003]) or DME by MeOH dehydration (see below), or the MeOH can be useddirectly as fuel. This last option is the focus of the present study (see also panion paper in this issue by Larson and Ren [2003]). In most parts of the world MeOH is made by steam reforming of natural gas, but in gaspoor regions such as China it is made mainly from coalderived syngas via gasification. Under the US Department of Energy39。s coal gasification facility in King sport, Tennessee。 NO x emissions from MeOH engines op erated at the same pression ratio as for gasoline would be less than for gasoline, because of the lower flame temperature, but when the pression ratio is increased to take advantage of MeOH39