【摘要】APCBOEF16.如圖,已知⊙O所在的平面,是⊙O的直徑,,C是⊙O上一點(diǎn),且,與⊙O所在的平面成角,是中點(diǎn).F為PB中點(diǎn).(1)求證:;(2)求證:;(3)求三棱錐B-PAC的體積.17.如圖,四面體ABCD中,O、E分別是BD、BC的中點(diǎn), (1)求證:平面BCD; (2)求異面直線AB與CD所成角的余弦值;
2025-01-29 11:10
【摘要】數(shù)學(xué)立體幾何知識(shí)點(diǎn) 高二數(shù)學(xué)立體幾何知識(shí)點(diǎn)總結(jié) 點(diǎn)線面三位一體,柱錐臺(tái)球?yàn)榇?。距離都從點(diǎn)出發(fā),角度皆為線線成。 垂直平行是重點(diǎn),證明須弄清概念。線線線面和面面、三對(duì)之間循環(huán)現(xiàn)。...
2024-12-04 22:22
【摘要】立體幾何知識(shí)點(diǎn)整理(文科)一.直線和平面的三種位置關(guān)系:1.線面平行符號(hào)表示:2.線面相交符號(hào)表示:3.線在面內(nèi)符號(hào)表示:二.平行關(guān)系:1.線線平行:方法一:用線面平行實(shí)現(xiàn)。方法二:用面面平行實(shí)現(xiàn)。方法三:用線面垂直實(shí)現(xiàn)。若,則。方法四:用向量
2025-04-19 05:17
【摘要】高中立體幾何知識(shí)點(diǎn)總結(jié)一、空間幾何體(一)空間幾何體的類型1多面體:由若干個(gè)平面多邊形圍成的幾何體。圍成多面體的各個(gè)多邊形叫做多面體的面,相鄰兩個(gè)面的公共邊叫做多面體的棱,棱與棱的公共點(diǎn)叫做多面體的頂點(diǎn)。2旋轉(zhuǎn)體:把一個(gè)平面圖形繞它所在的平面內(nèi)的一條定直線旋轉(zhuǎn)形成了封閉幾何體。其中,這條直線稱為旋轉(zhuǎn)體的軸。(二
2025-07-09 15:17
【摘要】一對(duì)一授課教案學(xué)員姓名:年級(jí):所授科目:上課時(shí)間:年月日時(shí)分至?xí)r分共小時(shí)老師簽名學(xué)生簽名教學(xué)主題空間向量與立體幾何上次作業(yè)檢查本次上課表現(xiàn)本
2025-07-08 04:23
【摘要】大成培訓(xùn)立體幾何強(qiáng)化訓(xùn)練,在四面體ABCD中,CB=CD,AD⊥BD,點(diǎn)E,F分別是AB,BD的中點(diǎn).求證:(Ⅰ)直線EF∥平面ACD;(Ⅱ)平面EFC⊥平面BCD.,在直三棱柱ABC-A1B1C1中,E、F分別是A1B、A1C的中點(diǎn),點(diǎn)D在B1C1上,A
2025-04-19 05:14
【摘要】高中數(shù)學(xué)立體幾何大題訓(xùn)練,在長(zhǎng)方體中,AB=AD=1,AA1=2,M是棱CC1的中點(diǎn)(Ⅰ)求異面直線A1M和C1D1所成的角的正切值;(Ⅱ)證明:平面ABM⊥平面A1B1M1,在矩形中,點(diǎn)分別在線段上,.沿直線將翻折成,使平面.(Ⅰ)求二面角的余弦值;(Ⅱ)點(diǎn)分別在線段上,若沿直線將四邊形向上翻折,使與重合,求線段的長(zhǎng)。,直三棱柱中
【摘要】導(dǎo)數(shù)主要內(nèi)容導(dǎo)數(shù)的背影.導(dǎo)數(shù)的概念.多項(xiàng)式函數(shù)的導(dǎo)數(shù).利用導(dǎo)數(shù)研究函數(shù)的單調(diào)性和極值.函數(shù)的最大值和最小值.考試要求:(1)了解導(dǎo)數(shù)概念的某些實(shí)際背景.(2)理解導(dǎo)數(shù)的幾何意義.(3)掌握函數(shù),y=c(c為常數(shù))、y=xn(n∈N+)的導(dǎo)數(shù)公式,會(huì)求多項(xiàng)式函數(shù)的導(dǎo)數(shù).(4)理解極大值、極小值、最大值、最小值的概念,并會(huì)用導(dǎo)數(shù)求多項(xiàng)式函數(shù)的單調(diào)區(qū)間、極大值、極小值及閉區(qū)間上的最大
2025-04-19 05:08
【摘要】第三章空間向量與立體幾何1、坐標(biāo)運(yùn)算2、共線向量定理3、共面向量定理6、空間向量基本定理7、立體幾何中的向量方法8、角、距離
2025-04-19 05:16
【摘要】第一篇:高中數(shù)學(xué)立體幾何證明公式 線線平行→線面平行如果平面外一條直線和這個(gè)平面內(nèi)的一條直線平行,那么這條直線和這個(gè)平面平行。 線面平行→線線平行如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這...
2024-10-27 00:25
【摘要】立體幾何重要定理:1)直線與平面垂直的判定定理:如果一條直線和一個(gè)平面內(nèi)的兩條相交直線都垂直,那么這兩條直線垂直于這個(gè)平面.2)直線和平面平行性質(zhì)定理:如果一條直線和一個(gè)平面平行,經(jīng)過這條直線的平面和這個(gè)平面相交,那么這條直線和交線平行.3)平面平行判定定理:如果一個(gè)平面內(nèi)有兩條
2025-01-06 02:37
【摘要】向量法解立體幾何1、直線的方向向量和平面的法向量⑴.直線的方向向量:若A、B是直線上的任意兩點(diǎn),則為直線的一個(gè)方向向量;與平行的任意非零向量也是直線的方向向量.⑵.平面的法向量:若向量所在直線垂直于平面,則稱這個(gè)向量垂直于平面,記作,如果,那么向量叫做平面的法向量.⑶.平面的法向量的求法(待定系數(shù)法):①建立適當(dāng)?shù)淖鴺?biāo)系.②設(shè)平面的法向量為.③求出平面內(nèi)兩
【摘要】高中數(shù)學(xué)選修2----2知識(shí)點(diǎn)第一章導(dǎo)數(shù)及其應(yīng)用一.導(dǎo)數(shù)概念的引入1.導(dǎo)數(shù)的物理意義:瞬時(shí)速率。一般的,函數(shù)在處的瞬時(shí)變化率是,我們稱它為函數(shù)在處的導(dǎo)數(shù),記作或,即=2.導(dǎo)數(shù)的幾何意義:,我們可以看出當(dāng)點(diǎn)趨近于時(shí),直線與曲線相切。容易知道,割線的斜率是,當(dāng)點(diǎn)趨近于時(shí),函數(shù)在處的導(dǎo)數(shù)就是切線PT的斜率k,即3.導(dǎo)函數(shù):當(dāng)x變化時(shí),便是x的一個(gè)函數(shù),我們
2024-08-24 19:28
【摘要】立體幾何專題之三垂線定理北京大學(xué)光華管理學(xué)院何洋寫在前面的話?高三同學(xué)在對(duì)立體幾何的基本知識(shí)進(jìn)行了系統(tǒng)的復(fù)習(xí)之后,對(duì)于比較重要的定理、概念以及在學(xué)習(xí)過程中感到難于掌握的問題進(jìn)行綜合性的專題復(fù)習(xí)是很必要的。在專題復(fù)習(xí)中應(yīng)通過分類、總結(jié),提高對(duì)所學(xué)內(nèi)容的認(rèn)識(shí)和理解。今天我和大家共同探討高中立體幾何中的三垂線問題。寫在前面的
2025-05-22 12:06
【摘要】專題一淺析中心投影與平行投影中心投影與平行投影是畫空間幾何體的三視圖和直觀圖的基礎(chǔ),弄清楚中心投影與平行投影能使我們更好地掌握三視圖和直觀圖,平行投影下,與投影面平行的平面圖形留下的影子,與這個(gè)平面圖形的形狀和大小完全相同;而中心投影則不同.下表簡(jiǎn)單歸納了中心投影與平行投影,結(jié)合實(shí)例讓我們進(jìn)一步了解平行投影和中心投影.投影定義特征分類中心投影光由一點(diǎn)向外散射形成的投
2025-04-19 05:09