freepeople性欧美熟妇, 色戒完整版无删减158分钟hd, 无码精品国产vα在线观看DVD, 丰满少妇伦精品无码专区在线观看,艾栗栗与纹身男宾馆3p50分钟,国产AV片在线观看,黑人与美女高潮,18岁女RAPPERDISSSUBS,国产手机在机看影片

正文內(nèi)容

外文翻譯---cche1d渠道網(wǎng)絡(luò)模型的靈敏度分析-閱讀頁(yè)

2025-02-01 23:26本頁(yè)面
  

【正文】 d, or specified as a constant value by the user. The adaptation length for bed load transport is suggested to set as the length of the dominant bed forms, such as , the length of sand dunes (van Rijn, 1984), or , the length of alternate sand bars in the channel (Yalin, 1972). Here, B is the average channel width. The mixing layer thickness is a key parameter in the determination of bed material gradation, which in turn influences the whole simulation. However, the evaluation methods for this parameter found in the literature are highly empirical. Physically, it is related to bedform movements. Therefore, in CCHE1D, the mixing layer thickness is set as half the sand dune height, which is calculated with van Rijn’s (1984)formula.Case Studies Case A: Channel Degradation. The experiment of bed degradation and armoring processes performed by Ashida and Michiue (1971) was used to test the CCHE1D model in a previous study (Wu, Vieira and Wang, 2000), and it is here adopted to conduct the sensitivity analysis of the model. The experimental flume was wide and 20m long. The flume bed was filled with nonuniform sediment with a median size of and a standard deviation of . In experimental run 6, the inlet flow discharge was m3/s, and the initial bed slope was . In this sensitivity analysis, only one parameter’s value is changed at a time, while all other parameters are kept the same as those used in the previous test. In order to examine the influence of Ls, several functions, such as Ls=, Ls=t and Ls=1+, have been used. Here, t is the time in hours. Figure 1 shows the parison of the measured and calculated bed scour depths at 7m, 10m and 13m upstream from the weir at the end of the flume. The function Ls= provides the best result for the bed scour process, especially the time to reach equilibrium state. The results from Ls=t and Ls=1+ are also very close to the measured data. It appears that the calculated scour depth is insensitive to Ls. It is also found that the calculated equilibrium bed material gradation at the armoring layer is insensitive to Ls. Figure 1. Sensitivity of the Calculated Bed Scour Depth to Ls in Ashida and Michue’s (1971) Run 6 In addition, the influence of mixing layer thickness on the calculated scour depth and bed material gradation is examined by changing the value of mixing layer thickness from the median size of parent mixture to twice that value. Figure 2 shows that the thicker the mixing layer, the larger the equilibrium scour depth. The time to reach the equilibrium scour depth and the equilibrium bed material gradation increases as the thickness of the mixing layer increases. The mixing layer thickness is important in the case of bed scour. Figure 2. Sensitivity of the Calculated Bed Scour Depth to Mixing Layer Thickness in Ashida and Michue’s (1971) Run 6Case B: Channel Aggradation. The channel aggradation experiments performed at the St. Anthony Falls Hydraulic Laboratory (SAFHL。 the sand yield decreases first and then increases with a net increase of 8%??紤]到隊(duì)列液壓結(jié)構(gòu)的影響,比如涵洞、堤岸、滴結(jié)構(gòu),和橋道口。CCHE1D模型可以減小流量和泥沙輸移的計(jì)算量但同時(shí)增大非均勻泥沙輸移、河床演變和河床質(zhì)分類來提高模型的數(shù)值穩(wěn)定性。在河漕刷深的情況下,這個(gè)模擬沖刷過程對(duì)非均衡適應(yīng)長(zhǎng)度的變化不敏感,但是混合層的厚度的選定對(duì)計(jì)算均衡沖刷深度和粗化層上的床沙粒徑分布很重要。即使這兩個(gè)參數(shù)有一個(gè)很大的參考范圍,但是這個(gè)CCHE1D模型也可以提供可靠地結(jié)果。這個(gè)項(xiàng)目是美國(guó)陸軍工程兵團(tuán)、自然資源保護(hù)局和農(nóng)業(yè)研究局跨部門合作完成的。CCHE1D整合了景觀分析工具黃玉、流域模型AGNPS和斯瓦特,通過一個(gè)基于gis的圖形用戶界面的ArcView。由于許多參數(shù)必須有經(jīng)驗(yàn)規(guī)定,所以知道它在這些不確定的參數(shù)下有什么結(jié)果是很重要的。CCHE1D通道網(wǎng)絡(luò)模型的介紹:水力模型:這個(gè)CCHE1D流模型使用擴(kuò)散波模型或動(dòng)態(tài)波模型模擬在渠道網(wǎng)絡(luò)  與復(fù)合截面的非定常流。用Preissmann的隱式、四點(diǎn)、有限差分格式離散化方程組。在CCHE1D模型失蹤考慮水工建筑物的影響如涵洞、測(cè)量槽、橋交叉口和滴結(jié)構(gòu)。泥沙輸移模型:這個(gè)CCHE1D模型使用一個(gè)非平衡的方法計(jì)算河流的非均勻泥沙輸移,總負(fù)載不均勻,運(yùn)輸不均衡的控制方程是: ?ACtk ?t+?Qtk?x+1Ls(QtkQt*k)=qlk (1)其中:A是流域面積;Ctk是泥沙大小等級(jí)為k的平均深度處總負(fù)載泥沙濃度;Qtk是真實(shí)總荷載下的輸移比率;Qt*k是總荷載下的輸移能力;Ls是非均衡輸移沙的適應(yīng)長(zhǎng)度;qlk是每單位河道長(zhǎng)度的岸堤或支流排放的沉淀物,還有來自CCHE1D模擬的岸堤侵蝕和岸堤沉積,來自被斯瓦特或AGNPS模擬的陸地侵蝕。,1995年),王武、賈慶林的公式(2000),修改后的Ackers和懷特的1973公(Proffitt和薩瑟蘭,1983),或修改1967年Engelund和漢森的公式(王武、賈慶林的校正因子,2000)決定的潛在輸沙率。?Abk?t是河床泥沙大小等級(jí)為k的變形速率。在混合層的河床材料漸變種類pbk是由下面公式?jīng)Q定的:?(AmPbk)?t=?Abk?t+p*bk(?Am?t?Ab?t) (4)其中:Am是混合層的截面積;?Ab?t是總的床變形率,定義為K=1N?Abk?t;N是泥沙大小等級(jí)的總數(shù);當(dāng) 時(shí),P*bk是混合層的Pbk,當(dāng)時(shí),P*bk是地表下層(混合層之下)大小級(jí)為kth的泥沙百分比。Eq(4)是由一個(gè)差分格式離散,為了滿足大眾保護(hù)。相比解耦方法其中Eq(2)顯式地處理,這種耦合方法是更穩(wěn)定和更容易消除出現(xiàn)的計(jì)算負(fù)床材料等級(jí)。模型參數(shù)的分析:河流的水流、泥沙數(shù)值模式中的參數(shù)可分為兩組:數(shù)值參數(shù)和物理參數(shù)。在CCHE1D的河道網(wǎng)絡(luò)模型中,數(shù)值參數(shù)包括計(jì)算時(shí)間步長(zhǎng)和網(wǎng)格的長(zhǎng)度,物理參數(shù)是曼寧粗糙度系數(shù),泥沙運(yùn)移的非平衡適應(yīng)長(zhǎng)度,混合層床料厚度,孔隙率等。一些物理參數(shù),如曼寧粗糙度系數(shù)和床料的孔隙率,已被許多研究人員研究并可以通過測(cè)量確定。因此,本文主要關(guān)注的是分析這兩個(gè)物理參數(shù)對(duì)模擬結(jié)果的影響。吳荻和文凱(2000)、吳維埃拉(2000)詳細(xì)審查了這些經(jīng)驗(yàn)并用半經(jīng)驗(yàn)方法確定發(fā)表在文獻(xiàn)上的LS,如貝爾和薩瑟蘭的(1981),armanini和迪西爾維奧(1988)等。在CCHE1D,洗沙適應(yīng)長(zhǎng)度設(shè)置為無限大的,因?yàn)闆_瀉質(zhì)和河床之間的交換??梢院雎圆挥?jì)。床負(fù)載運(yùn)輸適應(yīng)長(zhǎng)度建議設(shè)置為主導(dǎo)的床形式的長(zhǎng)度,沙丘的長(zhǎng)度(van Rijn,1984),通道中交替沙壩的長(zhǎng)度(亞林,1972)?;旌蠈雍穸仁谴擦霞?jí)配測(cè)定中的一個(gè)關(guān)鍵參數(shù),它影響整個(gè)模擬。實(shí)際上,它和床面形態(tài)的運(yùn)動(dòng)相關(guān)。實(shí)例研究:實(shí)例一:河槽刷深。在實(shí)驗(yàn)6,179。在這種敏感性分析,只有一個(gè)參數(shù)的值是在一個(gè)時(shí)間改變,而所有其他參數(shù)保持 與以前的試驗(yàn)相同。在這里,t為幾個(gè)小時(shí)的時(shí)間。Ls=,特別是到達(dá)平衡狀態(tài)的時(shí)間。它表明計(jì)算沖刷深度對(duì)LS是不敏感的。 圖一 此外,混合層厚度在計(jì)算沖刷深度和河床材料級(jí)配的影響是通過改變中間混合層厚度價(jià)值為母混合層的兩倍檢測(cè)的。達(dá)到平衡沖刷深度和平衡床沙級(jí)配的時(shí)間隨混合層厚度的增加而增加。 圖二案例二:渠道淤積。在水槽實(shí)驗(yàn)達(dá)到45米長(zhǎng)、。儲(chǔ)在水槽入口的沉積物包括一個(gè)廣泛的弱雙峰混合物尺寸,從0。由于沉積物超載,加積楔。在運(yùn)行2,179。、2m、。如圖三所示,Ls對(duì)礫石沉積前的定位、高度、敏捷有點(diǎn)影響。LS唯一值得注意的明顯影響就是對(duì)沉淀物前斜坡的影響。然而這發(fā)生在一個(gè)有限的距離,Ls的影響在計(jì)算河床演變是有限的。計(jì)算出的床資料之間的差異非常小。混合層的厚度對(duì)沉積的影響比以前的沖刷情況低的多。流域內(nèi)大部分的通道都是短暫的,只有在下游的分水嶺發(fā)生常年流。如推移質(zhì),懸移質(zhì),范圍從泥沙()到礫石(≤65mm)的沉積物被輸移。 圖5顯示了用TOPAZ從數(shù)字高程模型提取的古德溫河渠道網(wǎng)絡(luò)。模擬時(shí)間是18年,從1978年一月到1995年十二月,共有1192個(gè)風(fēng)暴事件。把SWAT(bingner等人。通過吳對(duì)模型的校準(zhǔn),維埃拉、王(2000)表明CCHE1D的通道在這個(gè)流域產(chǎn)沙演變提供了良好的預(yù)測(cè)模型。圖五 首先,α是非平衡適應(yīng)系數(shù),它是用來計(jì)算懸移質(zhì)非均衡適應(yīng)長(zhǎng)度,而其他參數(shù)保持不變。圖6顯示的是利用各種α計(jì)算的淤泥,沙子礫石產(chǎn)量的比較。淤泥的產(chǎn)量提高27%,礫石產(chǎn)量減少9%;砂量先減小后增大的凈增加8%;結(jié)果總輸沙量略下降5%。/年)8834859582588044沙(m179。/年)338389421428總計(jì)(m179。當(dāng)?shù)咨车拈L(zhǎng)度Ls從20m增加至200m,淤泥、%,%%,%。/年)888188348769沙(m179。/年)381338303總計(jì)(m179。%,%,%,%。表3 用不同混合層厚度計(jì)算流域出口產(chǎn)沙量沉積物類別計(jì)算年均產(chǎn)沙量δ=δ=δ=?淤泥(m179。/年)220721102089砂礫(m179。/年)114471131011261結(jié) 論:因?yàn)樵诔练e物運(yùn)輸模型中幾個(gè)參數(shù)必須事先規(guī)定,分析清楚這幾個(gè)參量對(duì)模型的影響程度就非常重要。我們已經(jīng)做了一些數(shù)值試驗(yàn)驗(yàn)證這些參量如何影響模型。在信道沉積的情況下模擬河床和在自然通道網(wǎng)絡(luò)下計(jì)算產(chǎn)沙量對(duì)泥沙轉(zhuǎn)移的非均衡適應(yīng)長(zhǎng)度和混合層厚度的都不敏感。這個(gè)結(jié)論為使用者在直接將這個(gè)模型運(yùn)用于實(shí)際項(xiàng)目中的河流和小溪上提供了理論基礎(chǔ)。土木工程,99(11),20412060頁(yè)Armanini,G(1988)?!?,26(3)阿諾德,哲學(xué),艾倫,下午和哈特,G(1993)?!?,142, 4769頁(yè)。“大壩下游河
點(diǎn)擊復(fù)制文檔內(nèi)容
公司管理相關(guān)推薦
文庫(kù)吧 www.dybbs8.com
備案圖鄂ICP備17016276號(hào)-1