【摘要】??.,.,,.,問題解決一些生活中的優(yōu)化數(shù)本節(jié)我們運用導(dǎo)值的有力工具小導(dǎo)數(shù)是求函數(shù)最大我們知道習(xí)前面的學(xué)過通通常稱為這些問題最省、效率最高等問題最大、用料生活中經(jīng)常遇到求利潤優(yōu)化問題高汽油的使用效率何時最例1?????????""2?,1:,.vw,h/km:vL:w,
2024-12-08 12:13
【摘要】高二數(shù)學(xué)組徐瑞虹生活中經(jīng)常遇到求利潤最大、用料最省、效率最高等問題,這些問題通常稱為優(yōu)化問題.通過前面的學(xué)習(xí),我們知道,導(dǎo)數(shù)是求函數(shù)最大(?。┲档膹娪辛ぞ撸@一節(jié),我們利用導(dǎo)數(shù),解決一些生活中的優(yōu)化問題.創(chuàng)設(shè)情景實例探究:學(xué)校舉行慶祝五一勞動節(jié)活動,需要張貼海報進(jìn)行宣傳.現(xiàn)讓你設(shè)計一張如圖所示的豎向張貼的海報,要
【摘要】導(dǎo)數(shù)在實際生活中的應(yīng)用新課引入:導(dǎo)數(shù)在實際生活中有著廣泛的應(yīng)用,利用導(dǎo)數(shù)求最值的方法,可以求出實際生活中的某些最值問題..(面積和體積等的最值)(利潤方面最值)(功和功率等最值)例1:在邊長為60cm的正方形鐵片的四角切去相等的正方形,再把它的邊沿虛線折起(如圖),做成一個無
2024-12-07 11:00
【摘要】??012222????babyax12yoFFMxyxoF2F1M??012222????babxay定義圖形方程焦點F(±c,0)F(0,±c)a,b,c之間的關(guān)系c2=a2-b2
2024-12-08 01:22
【摘要】第三章導(dǎo)數(shù)及其應(yīng)用(選修1-1)人教B版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用(選修1-1)人教B版數(shù)學(xué)第三章導(dǎo)數(shù)及其應(yīng)用(選修1-1)人教B版數(shù)學(xué)●課程目標(biāo)1.雙基目標(biāo)(1)理解函數(shù)在某點的平均變化率的概念,并會求
2025-01-23 00:05
【摘要】《橢圓的幾何性質(zhì)》教學(xué)目標(biāo)?知識與技能目標(biāo)?了解用方程的方法研究圖形的對稱性;理解橢圓的范圍、對稱性及對稱軸,對稱中心、離心率、頂點的概念;掌握橢圓的標(biāo)準(zhǔn)方程、會用橢圓的定義解決實際問題;通過例題了解橢圓的第二定義,準(zhǔn)線及焦半徑的概念,利用信息技術(shù)初步了解橢圓的第二定義.?過程與方法目標(biāo)?(1)復(fù)習(xí)與引入過程
2025-08-08 18:14
【摘要】標(biāo)準(zhǔn)方程復(fù)習(xí)引入:yOAF1F2xMcc把平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)2a(大于|F1F2|)的點的軌跡叫作橢圓.復(fù)習(xí)引入:yOAF1F2xMcc把平面內(nèi)
【摘要】睦薛鋇雄項餌根管各浩曰榜樸濤飲睦圈豢琶紳羌歪碘褲諒史蚤痰件瞇每項3.4生活中的優(yōu)化問題舉例3.4生活中的優(yōu)化問題舉例娠禍彼屆锨輕乓嘉冰
2025-02-02 19:49
【摘要】《生活中的優(yōu)化問題舉例》教學(xué)目標(biāo)?掌握導(dǎo)數(shù)在生活中的優(yōu)化問題問題中的應(yīng)用?教學(xué)重點:?掌握導(dǎo)數(shù)生活中的優(yōu)化問題問題中的應(yīng)用.規(guī)格(L)2價格(元)問題背景:飲料瓶大小對飲料公司利潤的影響下面是某品牌飲料的三種規(guī)格不同的產(chǎn)品,若它們的價格如下表所示,則(
【摘要】已知方程表示焦點在x軸上的橢圓,則m的取值范圍是.22xy+=14m(0,4)變式:已知方程表示焦點在y軸上的橢圓,則m的取值范圍是.22xy+=1m
【摘要】導(dǎo)數(shù)在研究函數(shù)中的應(yīng)用(2)孫學(xué)軍aby=f(x)xoyy=f(x)xoyabf'(x)0f'(x)0復(fù)習(xí):函數(shù)單調(diào)性與導(dǎo)數(shù)關(guān)系如果在某個區(qū)間內(nèi)恒有,則為常數(shù).0)(??xf)(xf設(shè)函數(shù)y=f(x)在
2024-12-08 15:25
【摘要】山東省泰安市肥城市第三中學(xué)高中數(shù)學(xué)生活中的優(yōu)化問題學(xué)案新人教A版選修2-2學(xué)習(xí)內(nèi)容學(xué)習(xí)指導(dǎo)即時感悟【學(xué)習(xí)目標(biāo)】;初步會解有關(guān)函數(shù)最大值、最小值的實際問題(一般指單峰函數(shù))。。【學(xué)習(xí)重點】利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題。【學(xué)習(xí)難點】利用導(dǎo)數(shù)解決生活中的一些優(yōu)化問題。學(xué)習(xí)方
2024-12-09 17:30
【摘要】復(fù)習(xí)與思考、標(biāo)準(zhǔn)方程是什么??平面上到兩個定點的距離的和(2a)等于定長(大于F1F2)的點的軌跡叫橢圓。?定點F1、F2叫做橢圓的焦點。?兩焦點之間的距離叫做焦距(2C)。22221(0)yxabab????焦點在y軸上22221(0)
2024-12-08 01:24
【摘要】橢圓的標(biāo)準(zhǔn)方程二、教學(xué)過程1、引入課題2、復(fù)習(xí)定義3、推導(dǎo)方程4、結(jié)構(gòu)分析5、鞏固練習(xí)壓扁教學(xué)過程F1F2P兩焦點之間的距離叫做焦距.定點F1、F2叫做橢圓的焦點。平面內(nèi)與兩個定點F1、F2的距離的和等于常數(shù)(大于F1F2)的點的軌跡叫橢圓2、當(dāng)線長小于
【摘要】復(fù)習(xí)::到兩定點F1、F2的距離之和為常數(shù)(大于|F1F2|)的動點的軌跡叫做橢圓。:a,b,c的關(guān)系是:a2=b2+c2|)|2(2||||2121FFaaPFPF???當(dāng)焦點在X軸上時當(dāng)焦點在Y軸上時)0(12222????babyax)0(12222????