【摘要】線性代數(shù)大學(xué)-----行列式經(jīng)典例題例1計(jì)算元素為aij=|i-j|的n階行列式.解方法1由題設(shè)知,=0,,,故其中第一步用的是從最后一行起,逐行減前一行.第二步用的每列加第列.方法2=例2.設(shè)a,b,c是互異的實(shí)數(shù),證明:????的充要條件是a+b+c=0.證明:考察
2025-04-09 07:38
【摘要】淺析Vandermonde行列式的性質(zhì)與應(yīng)用摘要:在線性代數(shù)與高等代數(shù)的學(xué)習(xí)中,行列式無疑是一個(gè)重點(diǎn)和難點(diǎn),它是后續(xù)課程矩陣、向量空間和線性變換等的基礎(chǔ),且其計(jì)算具有一定的規(guī)律性和技巧性.而Vandermonde行列式是一類很重要的行列式,它構(gòu)造獨(dú)特、形式優(yōu)美、性質(zhì)特殊,是行列式中的一顆璀璨明珠.為了使我們對(duì)vander
2025-07-31 21:42
【摘要】571上次課復(fù)習(xí)一、行列式的性質(zhì)及其推論性質(zhì)1行列式轉(zhuǎn)置,其值不變.571266853266853?根據(jù)性質(zhì)1,行所具有的性質(zhì)列也同樣具有.交換行列式的兩行,其值變號(hào).(列)性質(zhì)2推論如果行列式中有兩行(列)對(duì)應(yīng)元素相同,則此行列式為零.性質(zhì)3用數(shù)
2025-05-14 06:43
【摘要】淺析Vandermonde行列式的性質(zhì)與應(yīng)用摘要:在線性代數(shù)與高等代數(shù)的學(xué)習(xí)中,行列式無疑是一個(gè)重點(diǎn)和難點(diǎn),它是后續(xù)課程矩陣、向量空間和線性變換等的基礎(chǔ),Vandermonde行列式是一類很重要的行列式,它構(gòu)造獨(dú)特、形式優(yōu)美、性質(zhì)特殊,是行vandermonde行列式進(jìn)一步加深了解與應(yīng)用,同時(shí)開闊數(shù)學(xué)視野、培養(yǎng)發(fā)散思維能力,以便更好地為我們的科研和生活服務(wù),本文
2025-07-13 15:34
【摘要】行列式的若干計(jì)算技巧與方法目 錄摘要 1關(guān)鍵字 1 2階行列式的定義 2行列式的性質(zhì) 2 4定義法 4利用行列式的性質(zhì) 5降階法 7升階法(加邊法) 9數(shù)學(xué)歸納法 11遞推法 123.行列式計(jì)算的幾種特殊技巧和方法 14拆行(列)法 14構(gòu)造法 17特征值法 184.幾類特殊行列式的計(jì)算技巧
2025-07-01 18:05
【摘要】,312213332112322311322113312312332211aaaaaaaaaaaaaaaaaa??????333231232221131211aaaaaaaaa例如??3223332211aaaaa????3321312312aaaaa????3122322113aaaaa??33312321
2025-05-30 10:27
【摘要】行列式的計(jì)算方法總結(jié)1行列式的概念及性質(zhì)行列式的概念級(jí)行列式等于所有取自不同行不同列的個(gè)元素的乘積的代數(shù)和,這里的是1,2,…,的一個(gè)排列,每一項(xiàng)都按下列規(guī)則帶有符號(hào):當(dāng)是偶排列時(shí),帶有正號(hào);當(dāng)是奇排列時(shí),帶有負(fù)號(hào)。這一定義可寫成,這里表示對(duì)所有級(jí)排列的求和。行列式的性質(zhì)[1]性質(zhì)1行列互換,行列式值不變,即性質(zhì)2行列式中
2025-07-08 14:08
【摘要】行列式習(xí)題精選一、判斷下列各項(xiàng)是否為五階行列式的項(xiàng)?(包括符號(hào))(1)-a21a34a15a23a52解:由于其中的元a21,a23在同一行,故不是五階行列式的項(xiàng)。(2)+a32a15a24a53a41解:將其重新排列為+a15a24a32a41a53容易看出其中的五個(gè)元都不同行,也都不同列??扇1=5,j2=4,j3=2,j4=1,j5
2024-08-24 16:27
【摘要】本科畢業(yè)論文(設(shè)計(jì))題目:行列式乘法規(guī)則的證明方法及其應(yīng)用學(xué)生:***學(xué)號(hào):*************學(xué)院:數(shù)學(xué)與計(jì)算科學(xué)學(xué)院專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)入學(xué)時(shí)間:2020
2024-09-16 21:46
【摘要】.....渤海大學(xué)畢業(yè)論文題目:行列式的計(jì)算系別:數(shù)學(xué)系專業(yè):數(shù)學(xué)與應(yīng)用數(shù)學(xué)班級(jí):
2025-07-09 01:05
【摘要】1五.行列式按行(列)展開對(duì)于三階行列式,容易驗(yàn)證:333231232221131211aaaaaaaaa333123211333312321123332232211aaaaaaaaaaaaaaa???可見一個(gè)三階行列式可以轉(zhuǎn)化成三個(gè)二階行列式的計(jì)算。問題:一個(gè)n階行列式是
2025-05-22 00:52
【摘要】§行列式的基本性質(zhì)第二章行列式直接用定義計(jì)算行列式是很麻煩的事,本節(jié)要導(dǎo)出行列式運(yùn)算的一些性質(zhì),利用這些性質(zhì),將使行列式的計(jì)算大為簡(jiǎn)化。轉(zhuǎn)置行列式:把n階行列式111212122212nnnnnnaaaaaaDaaa?的第i行變?yōu)榈趇
2024-08-30 12:05
【摘要】+-稱為二階行列式.一、二階行列式§例:解二元一次方程組二、n階行列式的遞推定義定義:由一個(gè)數(shù)組成的一階方陣和它的行列式就是這個(gè)數(shù)本身。定義在n階方陣中去掉元素所在的第i行和第j列后,余下的n-1階行列式,稱為A中元素
2025-05-15 18:25
【摘要】行列式和矩陣---《線性代數(shù)》線性代數(shù)起源于處理線性關(guān)系問題,它是代數(shù)學(xué)的一個(gè)分支,形成于20世紀(jì),但歷史卻非常久遠(yuǎn),部分內(nèi)容在東漢初年成書的《九章算術(shù)》里已有雛形論述,不過直到18—19世紀(jì)期間,隨著研究線性方程組和變量線性變換問題的深入,才先后產(chǎn)生了行列式和矩陣的概念,為處理線性問題提供了強(qiáng)有力的理論工具,并推動(dòng)了線性代數(shù)的
2025-01-30 05:50
【摘要】第二章矩陣運(yùn)算和行列式§矩陣及其運(yùn)算一.矩陣與向量1.m?n矩陣元素:aij(i=1,…,m,j=1,…,n)?§§§§a11a12…a1na21a22…a2n…………am1
2025-05-14 03:05