【摘要】第一篇:立體幾何判定定理及性質(zhì)定理匯總 立體幾何判定定理及性質(zhì)定理匯總 一線面平行 線面平行判定定理 平面外一條直線與此平面內(nèi)的一條直線平行,則該直線與此平面平行。線面平行性質(zhì)定理 一條直線...
2024-11-06 12:01
【摘要】線面平行、面面平行的判定例題解析:,ABCD是平行四邊形,S是平面ABCD外一點(diǎn),M為SC的中點(diǎn).求證:SA∥平面MDB.ABDCEFMN,、在對角線、上,且,求證:平面,點(diǎn)P是平面ABCD外一點(diǎn),M是PC的中點(diǎn),在DM上取一點(diǎn)G,過G和AP作平面交平面BDM于GH,求
2025-04-19 04:28
【摘要】第一篇:線面平行的判定與性質(zhì) 線面平行的判定與性質(zhì) [基礎(chǔ)練習(xí)] 1.下列命題正確的是() A一直線與平面平行,則它與平面內(nèi)任一直線平行 B一直線與平面平行,則平面內(nèi)有且只有一個直線與已知直...
2024-11-09 12:06
【摘要】第一篇:立體幾何的平行與證明問題 立體幾何 1.知識網(wǎng)絡(luò) 一、經(jīng)典例題剖析 考點(diǎn)一點(diǎn)線面的位置關(guān)系 1、設(shè)l是直線,a,β是兩個不同的平面() A.若l∥a,l∥β,則a∥βB.若l∥a,...
2024-11-16 23:04
【摘要】立體幾何平行證明題二、平面與平面平行:)//,:(//::1??????????則若用符號表示為記為平行與平面則稱平面沒有公共點(diǎn)與平面平面定義???,、2、判定方法??????????////////:??????????或其它方法aa②baba,、///
2024-08-24 09:40
【摘要】ZPZ空間“角度”問題設(shè)直線,lm的方向向量分別為,abla?mla?mb???若兩直線所成的角為,則,lm(0)2???≤≤cosabab???復(fù)習(xí)引入①方向向量法將二面角轉(zhuǎn)化為二面角的兩個面的
2024-08-24 10:54
【摘要】第一篇:線線垂直、線面垂直、面面垂直的判定與性質(zhì) 清新縣濱江中學(xué)2012屆高三文科數(shù)學(xué)第一輪復(fù)習(xí)資料2011-12- 31空間中的垂直關(guān)系 1.判斷線線垂直的方法:所成的角是,兩直線垂直; 垂...
2024-11-16 23:07
【摘要】第一篇:+ 山東省新泰市第二中學(xué)高一數(shù)學(xué)組主編人:李健吳師磊 直線與平面平行的性質(zhì) 學(xué)習(xí)目標(biāo): 1、掌握直線與平面平行的性質(zhì)定理;會用性質(zhì)定理進(jìn)行簡單地證明; 2、掌握面面平行的性質(zhì)定理...
2024-11-16 01:23
【摘要】第一篇:2013屆高三數(shù)學(xué)專題——立體幾何(二)線面平行與垂直 2013屆高三數(shù)學(xué)專題——立體幾何 (二)線面平行與垂直 一、定理內(nèi)容(數(shù)學(xué)語言) (1)證明線面平行 (2)證明面面平行 ...
2024-11-16 01:14
【摘要】立體幾何證明平行專題訓(xùn)練命題:***1.如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)2、如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G、F分別為AD、CE的中點(diǎn),現(xiàn)將△ADE沿AE折疊,使得D
2025-04-09 06:44
【摘要】立體幾何大題訓(xùn)練(1)1、如圖,三棱柱ABC-A1B1C1的底面是邊長為2的等邊三角形,AA1⊥底面ABC,點(diǎn)E,F(xiàn)分別是棱CC1,BB1上的點(diǎn),且EC=B1F=2FB.(1)證明:平面AEF⊥平面ACC1A1;(2)若AA1=3,求直線AB與平面AEF所成角的正弦值.2、如圖,在四棱錐中,平
2025-04-09 06:43
【摘要】平面與平面垂直的判定定理和性質(zhì)定理??????二面角1問題1、在平面幾何中“角”是怎樣定義的?答:從平面內(nèi)一點(diǎn)出發(fā)的兩條射線所組成的圖形叫做角。2、等角定理?o答:如果一個角的兩邊和另一個角的兩邊分別平行,并且方向相同,那么這兩個角相等。A
2024-12-07 23:22
【摘要】第一篇:線面、面面平行習(xí)題 線面、面面平行習(xí)題課 三、例題精講 題型 1、線面平行判定定理,線面平行性質(zhì)定理 線線平行?線面平行 例 1、(線線平行→線面平行→線線平行) 解:已知直線...
【摘要】立體幾何——平行的證明【例1】如圖,四棱錐P-ABCD的底面是平行四邊形,點(diǎn)E、F分別為棱AB、PD的中點(diǎn).求證:AF∥平面PCE;(第1題圖)分析:取PC的中點(diǎn)G,連EG.,F(xiàn)G,則易證AEGF是平行四邊形【例2】如圖,已知直角梯形ABCD中,AB∥CD,AB⊥BC,AB=1,BC=2,CD=1+,過A作AE⊥CD,垂足為E,G
2025-04-10 05:42
【摘要】同步練習(xí)第I卷(選擇題),是三個不同平面,則下列命題正確的是().A、若∥∥,則∥B、若,則∥C、若∥∥,則∥D、若,則∥,是三個不同的平面,則下列命題中正確的是()A.,則B.,則C.,則D.,則、n為兩條不同的直線,、為兩個不同的平面,下列命題中正